Python处理Json数据

Python处理Json数据

JSON文件以可读的格式将数据存储为文本。 JSON代表JavaScript Object Notation。 使用read_json函数,Pandas可以读取JSON文件。

输入数据

通过将以下数据复制到文本编辑器(如记事本)来创建JSON文件。选择文件类型作为所有文件(.),使用.json扩展名保存文件,假设保存的文件名称为:input.json

{ 
   "ID":["1","2","3","4","5","6","7","8" ],
   "Name":["Rick","Dan","Michelle","Ryan","Gary","Nina","Simon","Guru" ]
   "Salary":["623.3","515.2","611","729","843.25","578","632.8","722.5" ],

   "StartDate":[ "1/1/2012","9/23/2013","11/15/2014","5/11/2014","3/27/2015","5/21/2013",
      "7/30/2013","6/17/2014"],
   "Dept":[ "IT","Operations","IT","HR","Finance","IT","Operations","Finance"]
}

读取JSON文件

Pandas库的read_json函数可用于将JSON文件读入为pandas DataFrame数据结构类型。

import pandas as pd

data = pd.read_json('path/input.json')
print (data)

当我们执行上面的代码时,它会产生以下结果。

         Dept  ID    Name  Salary   StartDate
         IT   1    Rick  623.30    1/1/2012
 Operations   2     Dan  515.20   9/23/2013
         IT   3   Tusar  611.00  11/15/2014
         HR   4    Ryan  729.00   5/11/2014
    Finance   5    Gary  843.25   3/27/2015
         IT   6   Rasmi  578.00   5/21/2013
 Operations   7  Pranab  632.80   7/30/2013
    Finance   8    Guru  722.50   6/17/2014

读取特定的列和行

与在前一章中已经看到的读取CSV文件类似,读取JSON文件到DataFrame后,pandas库的read_json函数也可用于读取一些特定列和特定行。 使用.loc()的多轴索引方法。选择显示salaryname列的某些行。

import pandas as pd
data = pd.read_json('path/input.xlsx')

# Use the multi-axes indexing funtion
print (data.loc[[1,3,5],['salary','name']])

当我们执行上面的代码时,它会产生以下结果。

   salary   name
  515.2    Dan
  729.0   Ryan
  578.0  Rasmi

将JSON文件作为记录读取

还可以将to_json函数与参数一起应用于将JSON文件内容读入单个记录。

import pandas as pd
data = pd.read_json('path/input.xlsx')

print(data.to_json(orient='records', lines=True))

执行上面示例代码,得到以下结果 -

{"Dept":"IT","ID":1,"Name":"Rick","Salary":623.3,"StartDate":"1\/1\/2012"}
{"Dept":"Operations","ID":2,"Name":"Dan","Salary":515.2,"StartDate":"9\/23\/2013"}
{"Dept":"IT","ID":3,"Name":"Tusar","Salary":611.0,"StartDate":"11\/15\/2014"}
{"Dept":"HR","ID":4,"Name":"Ryan","Salary":729.0,"StartDate":"5\/11\/2014"}
{"Dept":"Finance","ID":5,"Name":"Gary","Salary":843.25,"StartDate":"3\/27\/2015"}
{"Dept":"IT","ID":6,"Name":"Rasmi","Salary":578.0,"StartDate":"5\/21\/2013"}
{"Dept":"Operations","ID":7,"Name":"Pranab","Salary":632.8,"StartDate":"7\/30\/2013"}
{"Dept":"Finance","ID":8,"Name":"Guru","Salary":722.5,"StartDate":"6\/17\/2014"}