1 算法原理
头脑风暴优化算法主要由聚类和变异组成。
1.1 聚类
聚类:BSO采用K-means聚类算法,将相似的个体聚成k类,并将人为设定的适应度函数值最优的个体作为聚类的中心。当然,为了避免陷入局部最优,将有概率随机产生一个新个体替换其中
一个聚类中心。
1.2 变异
BSO变异主要有4种方式,分别是:(a)在随机一个类中心,即该类最优个体上添加随机扰动产生新的个体;(b)在随机一个类中随机选择一个个体添加随机扰动产生新的个体;©随机融合两个类中心,并添加随机扰动产生新的个体;(d)随机融合两个类中随机的两个个体,并添加随机扰动产生新的个体。
上述4种方式每个聚类中心,即类中最优个体
被选中的概率为:
2 算法流程
function best_fitness = bso2(fun,n_p,n_d,n_c,rang_l,rang_r,max_iteration) % fun = fitness_function % n_p; population size % n_d; number of dimension % n_c: number of clusters % rang_l; left boundary of the dynamic range % rang_r; right boundary of the dynamic range prob_one_cluster = 0.8; % probability for select one cluster to form new individual; stepSize = ones(1,n_d); % effecting the step size of generating new individuals by adding random values popu = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the population of individuals popu_sorted = rang_l + (rang_r - rang_l) * rand(n_p,n_d); % initialize the population of individuals sorted according to clusters n_iteration = 0; % current iteration number % initialize cluster probability to be zeros prob = zeros(n_c,1); best = zeros(n_c,1); % index of best individual in each cluster centers = rang_l + (rang_r - rang_l) * rand(n_c,n_d); % initialize best individual in each cluster centers_copy = rang_l + (rang_r - rang_l) * rand(n_c,n_d); % initialize best individual-COPY in each cluster FOR the purpose of introduce random best best_fitness = 1000000*ones(max_iteration,1); fitness_popu = 1000000*ones(n_p,1); % store fitness value for each individual fitness_popu_sorted = 1000000*ones(n_p,1); % store fitness value for each sorted individual indi_temp = zeros(1,n_d); % store temperary individual %************************************************************************** %************************************************************************** % calculate fitness for each individual in the initialized population for idx = 1:n_p fitness_popu(idx,1) = fun(popu(idx,:)); end while n_iteration < max_iteration cluster = kmeans(popu, n_c,'Distance','cityblock','Start',centers,'EmptyAction','singleton') % k-mean cluster % clustering fit_values = 100000000000000000000000000.0*ones(n_c,1); % assign a initial big fitness value as best fitness for each cluster in minimization problems number_in_cluster = zeros(n_c,1); % initialize 0 individual in each cluster for idx = 1:n_p number_in_cluster(cluster(idx,1),1)= number_in_cluster(cluster(idx,1),1) + 1; % find the best individual in each cluster if fit_values(cluster(idx,1),1) > fitness_popu(idx,1) % minimization fit_values(cluster(idx,1),1) = fitness_popu(idx,1); best(cluster(idx,1),1) = idx; end end best % form population sorted according to clusters counter_cluster = zeros(n_c,1); % initialize cluster counter to be 0 acculate_num_cluster = zeros(n_c,1); % initialize accumulated number of individuals in previous clusters for idx =2:n_c acculate_num_cluster(idx,1) = acculate_num_cluster((idx-1),1) + number_in_cluster((idx-1),1); end %start form sorted population for idx = 1:n_p counter_cluster(cluster(idx,1),1) = counter_cluster(cluster(idx,1),1) + 1 ; temIdx = acculate_num_cluster(cluster(idx,1),1) + counter_cluster(cluster(idx,1),1); popu_sorted(temIdx,:) = popu(idx,:); fitness_popu_sorted(temIdx,1) = fitness_popu(idx,1); end % record the best individual in each cluster for idx = 1:n_c centers(idx,:) = popu(best(idx,1),:); end centers_copy = centers % make a copy if (rand() < 0.2) % select one cluster center to be replaced by a randomly generated center cenIdx = ceil(rand()*n_c); centers(cenIdx,:) = rang_l + (rang_r - rang_l) * rand(1,n_d); end % calculate cluster probabilities based on number of individuals in % each cluster for idx = 1:n_c prob(idx,1) = number_in_cluster(idx,1)/n_p; if idx > 1 prob(idx,1) = prob(idx,1) + prob(idx-1,1); end end % generate n_p new individuals by adding Gaussian random values for idx = 1:n_p r_1 = rand(); % probability for select one cluster to form new individual if r_1 < prob_one_cluster % select one cluster r = rand(); for idj = 1:n_c if r < prob(idj,1) if rand() < 0.4 % use the center indi_temp(1,:) = centers(idj,:); else % use one randomly selected cluster indi_1 = acculate_num_cluster(idj,1) + ceil(rand() * number_in_cluster(idj,1)); indi_temp(1,:) = popu_sorted(indi_1,:); end break end end else % select two clusters % pick two clusters cluster_1 = ceil(rand() * n_c); indi_1 = acculate_num_cluster(cluster_1,1) + ceil(rand() * number_in_cluster(cluster_1,1)); cluster_2 = ceil(rand() * n_c); indi_2 = acculate_num_cluster(cluster_2,1) + ceil(rand() * number_in_cluster(cluster_2,1)); tem = rand(); if rand() < 0.5 %use center indi_temp(1,:) = tem * centers(cluster_1,:) + (1-tem) * centers(cluster_2,:); else % use randomly selected individuals from each cluster indi_temp(1,:) = tem * popu_sorted(indi_1,:) + (1-tem) * popu_sorted(indi_2,:); end end %Griewank function z = griewank(x) % unimodal optimum 0 [m,n]=size(x); for j=1:m for e=1:n f1(e)=x(j,e)^2; f2(e)=cos(x(j,e)/sqrt(e)); end
版本:2014a