题面
设 \(l_{i}\) 为以 \(i\) 为结尾的区间中最大的一段异或值,\(r_{i}\) 为以 \(i\) 为开头的区间中最大的一段异或值。
则有
\[l_{i}=\max\left(l[i-1],sum_{l-1}\oplus sum_{r}\right) \]\[r_{i}=\max\left(r[i+1],sum_{l-1}\oplus sum_{r}\right) \]\(sum_{i}\) 为异或前缀和,跟前缀和是差不多的,就是运算的方式改成了异或。
最后的答案则为
\[ans=\max\left(ans,l_{i}+r_{i+1}\right) \]Code:
#include<cstdio> #define MAX 400001 #define re register namespace OMA { int n; int l[MAX],r[MAX]; int sum[MAX],num[MAX]; struct Trie { int tot; int ch[MAX*31][2]; void begin() { tot = 0; for(re int i=0; i<=n*31; i++) { for(re int j=0; j<=1; j++) { ch[i][j] = 0; } } } inline void insert(int x) { int u = 0; for(re int i=30; i>=0; i--) { int pos = (x>>i)&1; if(!ch[u][pos]) { ch[u][pos] = ++tot; } u = ch[u][pos]; } } inline int query(int x) { int u = 0,ans = 0; for(re int i=30; i>=0; i--) { int pos = (x>>i)&1; if(ch[u][pos^1]) { u = ch[u][pos^1],ans += 1<<i; } else { u = ch[u][pos]; } } return ans; } }tree; inline int max(int a,int b) { return a>b?a:b; } inline int read() { int s=0,w=1; char ch=getchar(); while(ch<'0'||ch>'9'){ if(ch=='-')w=-1; ch=getchar(); } while(ch>='0'&&ch<='9'){ s=s*10+ch-'0'; ch=getchar(); } return s*w; } signed main() { n=read(); int ans = 0; for(re int i=1; i<=n; i++) { num[i] = read(); } for(re int i=1; i<=n; i++) { tree.insert(sum[i] ^= sum[i-1]^num[i]); } for(re int i=1; i<=n; i++) { l[i] = max(l[i-1],tree.query(sum[i])); } tree.begin(); for(re int i=1; i<=n; i++) { sum[i] = 0; } for(re int i=n; i>=1; i--) { tree.insert(sum[i] ^= sum[i+1]^num[i]); } for(re int i=n; i>=1; i--) { r[i] = max(r[i+1],tree.query(sum[i])); } for(re int i=1; i<n; i++) { ans = max(ans,l[i]+r[i+1]); } printf("%d\n",ans); return 0; } } signed main() { return OMA::main(); }