C/C++教程

避坑:@Around与@Transactional混用导致事务不回滚

本文主要是介绍避坑:@Around与@Transactional混用导致事务不回滚,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

前言

上个月,同事出于好奇在群里问AOP的环绕通知与事务注解混合用会不会导致出现异常不回滚的情况。这个问题我一下子回答不上来,因为平时没这样用过,在好奇心的驱使下,我调试了半天终于得到结果,今天我就展开讲讲。(源码解读在最后面,感兴趣的可以看看。)

结论

首先告诉大家的是,同时使用AOP环绕通知和事务注解之后,最终生成的拦截器链的相对顺序是事务的拦截器在前面,AOP环绕通知的拦截器在后面。 在事务的实现中将拦截器的执行过程包裹在了try-catch块中,发生异常后根据配置来决定是否回滚事务。(详见org.springframework.transaction.interceptor.TransactionInterceptor#invoke),因此事务后面的拦截器都会影响事务的执行结果。如果在AOP环绕通知里面将拦截器链执行结果中的异常给吞掉,那么事务就会正常提交而不会回滚。

示例

业务代码

业务代码中直接抛出异常,代码如下所示。

package com.example.demo.aspect;

import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

/**
 * @Author Paul
 * @Date 2022/7/3 15:52
 */
@Service
public class CustomService {

  @Transactional(rollbackFor = Exception.class)
  public void echo(){
    boolean s = true;
    if (s){
      throw new RuntimeException("test");
    }
    System.out.println("Hello------");
  }

}

环绕通知

环绕通知中捕捉异常并打印日志,代码如下所示。

package com.example.demo.aspect;

import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

/**
 * @Author Paul
 * @Date 2022/7/3 15:49
 */
@Component
@Aspect
public class CustomAspect {

    @Pointcut("execution(* com.example.demo.aspect..*(..))")
    public void pointcut(){
    }

    @Around("pointcut()")
    public void around(ProceedingJoinPoint joinPoint){
        try {
            joinPoint.proceed();
        } catch (Throwable throwable) {
            throwable.printStackTrace();
        }
    }

}

测试类

这里是用get请求来测试(本来应该用 unit test 来测试的,但是懒得写代码了,手动测试和 UT 的效果一样),代码如下所示。

package com.example.demo.controller;

import com.example.demo.aspect.CustomService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Date;

@RestController
@RequestMapping("/home")
public class HomeController {

    private CustomService customService;

    @Autowired
    public void setCustomService(CustomService customService) {
        this.customService = customService;
    }

    @GetMapping("/echo")
    public String echo(){
        customService.echo();
        return new Date().toString();
    }
}

打断点

直接debug更加清晰,给出几个关键的位置,方便大家定位(记得下载spring源码再debug,不然会跟我给出的行数对不上)。

  • org.springframework.transaction.interceptor.TransactionAspectSupport#invokeWithinTransaction line:388和407 (分别对应事务往后执行和最后提交事务的代码)
  • com.example.demo.aspect.CustomAspect#around line:24和26 (自定义环绕通知的代码中的 joinPoint.proceed(),以及异常处理的地方)
  • com.example.demo.aspect.CustomService#echo line:18 (业务代码中抛出异常的地方)

效果描述

启动项目后直接用GET请求访问本地http://localhost:8080/home/echo ,你会发现断点的执行顺序是 org.springframework.transaction.interceptor.TransactionAspectSupport#invokeWithinTransaction line:388com.example.demo.aspect.CustomAspect#around line:24com.example.demo.aspect.CustomService#echo line:18com.example.demo.aspect.CustomAspect#around line:26org.springframework.transaction.interceptor.TransactionAspectSupport#invokeWithinTransaction line:407

现象:同时有环绕通知和事务时,在业务代码中抛出的异常会先被环绕通知处理,所以后面事务会正常提交而不会回滚。

现实情况

现实中,我们很多人喜欢用环绕通知处理一些通用逻辑,那为什么没有出现bug呢?这里我列举下,环绕通知的常见使用场景如下。

  • 打日志
  • 流控

这些场景的共同特点是它们都是在入口层(也就是Web层)做的环绕通知,而我们通常不会把所有逻辑都写在入口层(如果你真的这么做了,我相信Code Review不会通过),而是有一个逻辑处理层(也就是service层)对入口层的数据进行专门处理。因此,我们的事务注解也大都标注在逻辑处理层的方法上。这样看来,确实很少有上面提到的场景。(这里我们可以看到,遵守开发规范在一定程度上对开发效率是有提升的,它可以规避一些bug)

源码解读

说明: 在上面我们介绍了拦截器链的顺序是事务在前,环绕通知在后。这里解读源码的目的是为了搞清楚为什么事务的拦截器在前,环绕通知的拦截器在后。

我们知道事务和环绕通知的最终实现都是通过 AOP,而 spring 默认的 AOP构造类就是 org.springframework.aop.framework.CglibAopProxy,通过getProxy() 完成构造,而getCallbacks()就是构造的关键,可以看到关键代码在DynamicAdvisedInterceptor中,在这个类中完成了拦截器链的构造。(代码就不展示AOP代码了,这里涉及到AOP的太多知识,有兴趣的可以联系我,我可以单独讲讲)。

/**
 * General purpose AOP callback. Used when the target is dynamic or when the
 * proxy is not frozen.
 */
private static class DynamicAdvisedInterceptor implements MethodInterceptor, Serializable {

  private final AdvisedSupport advised;

  public DynamicAdvisedInterceptor(AdvisedSupport advised) {
    this.advised = advised;
  }

  @Override
  @Nullable
  public Object intercept(Object proxy, Method method, Object[] args, MethodProxy methodProxy) throws Throwable {
    Object oldProxy = null;
    boolean setProxyContext = false;
    Object target = null;
    TargetSource targetSource = this.advised.getTargetSource();
    try {
      if (this.advised.exposeProxy) {
        // Make invocation available if necessary.
        oldProxy = AopContext.setCurrentProxy(proxy);
        setProxyContext = true;
      }
      // Get as late as possible to minimize the time we "own" the target, in case it comes from a pool...
      target = targetSource.getTarget();
      Class<?> targetClass = (target != null ? target.getClass() : null);
      List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);
      Object retVal;
      // Check whether we only have one InvokerInterceptor: that is,
      // no real advice, but just reflective invocation of the target.
      if (chain.isEmpty() && Modifier.isPublic(method.getModifiers())) {
        // We can skip creating a MethodInvocation: just invoke the target directly.
        // Note that the final invoker must be an InvokerInterceptor, so we know
        // it does nothing but a reflective operation on the target, and no hot
        // swapping or fancy proxying.
        Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
        retVal = methodProxy.invoke(target, argsToUse);
      }
      else {
        // We need to create a method invocation...
        retVal = new CglibMethodInvocation(proxy, target, method, args, targetClass, chain, methodProxy).proceed();
      }
      retVal = processReturnType(proxy, target, method, retVal);
      return retVal;
    }
    finally {
      if (target != null && !targetSource.isStatic()) {
        targetSource.releaseTarget(target);
      }
      if (setProxyContext) {
        // Restore old proxy.
        AopContext.setCurrentProxy(oldProxy);
      }
    }
  }

  @Override
  public boolean equals(@Nullable Object other) {
    return (this == other ||
      (other instanceof DynamicAdvisedInterceptor &&
        this.advised.equals(((DynamicAdvisedInterceptor) other).advised)));
  }

  /**
   * CGLIB uses this to drive proxy creation.
   */
  @Override
  public int hashCode() {
    return this.advised.hashCode();
  }
}

上面可以看到拦截器链是通过this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);来构造的,最终其实走到org.springframework.aop.framework.DefaultAdvisorChainFactory#getInterceptorsAndDynamicInterceptionAdvice,简化后的代码如下。

public class DefaultAdvisorChainFactory implements AdvisorChainFactory, Serializable {

	@Override
	public List<Object> getInterceptorsAndDynamicInterceptionAdvice(
			Advised config, Method method, @Nullable Class<?> targetClass) {

		// This is somewhat tricky... We have to process introductions first,
		// but we need to preserve order in the ultimate list.
		AdvisorAdapterRegistry registry = GlobalAdvisorAdapterRegistry.getInstance();
		Advisor[] advisors = config.getAdvisors();
		List<Object> interceptorList = new ArrayList<>(advisors.length);
		Class<?> actualClass = (targetClass != null ? targetClass : method.getDeclaringClass());
		Boolean hasIntroductions = null;

		for (Advisor advisor : advisors) {
			if (advisor instanceof PointcutAdvisor) {
				// Add it conditionally.
				PointcutAdvisor pointcutAdvisor = (PointcutAdvisor) advisor;
				if (config.isPreFiltered() || pointcutAdvisor.getPointcut().getClassFilter().matches(actualClass)) {
					MethodMatcher mm = pointcutAdvisor.getPointcut().getMethodMatcher();
					boolean match;
					if (mm instanceof IntroductionAwareMethodMatcher) {
						if (hasIntroductions == null) {
							hasIntroductions = hasMatchingIntroductions(advisors, actualClass);
						}
						match = ((IntroductionAwareMethodMatcher) mm).matches(method, actualClass, hasIntroductions);
					}
					else {
						match = mm.matches(method, actualClass);
					}
					if (match) {
						MethodInterceptor[] interceptors = registry.getInterceptors(advisor);
						if (mm.isRuntime()) {
							// Creating a new object instance in the getInterceptors() method
							// isn't a problem as we normally cache created chains.
							for (MethodInterceptor interceptor : interceptors) {
								interceptorList.add(new InterceptorAndDynamicMethodMatcher(interceptor, mm));
							}
						}
						else {
							interceptorList.addAll(Arrays.asList(interceptors));
						}
					}
				}
			}
			else {
				Interceptor[] interceptors = registry.getInterceptors(advisor);
				interceptorList.addAll(Arrays.asList(interceptors));
			}
		}

		return interceptorList;
	}

}

可以看到,最终还是通过Ioc中的org.springframework.aop.Advisor来得到最终的拦截器链。代码里面是遍历 Advisor,判断是否符合条件,把符合条件的拦截器放入最终结果。因此 Advisor 的相对顺序和拦截器链的相对顺序是一致的。

而在SpringBoot启动的时候,会通过spring.factories中配置的相对顺序来自动装配模块。Aop先于事务装载,在装载Aspectj相关模块时会将org.springframework.aop.aspectj.annotation.AnnotationAwareAspectJAutoProxyCreator注册到IOC容器中。当装配事务时,也向IOC容器中注入了org.springframework.transaction.interceptor.BeanFactoryTransactionAttributeSourceAdvisor。在通过Aop生成的Advisor时,会通过org.springframework.aop.framework.autoproxy.AbstractAdvisorAutoProxyCreator#findCandidateAdvisors来找所有的 Advisor,而此时还在IOC刷新阶段,只有事务注册了Advisor,因此会先加载事务相关的Advisor。(详细代码在org.springframework.aop.aspectj.annotation.AnnotationAwareAspectJAutoProxyCreator#findCandidateAdvisors有兴趣的可以自行查阅)。而到DI时再去生成拦截器链时,就会发现事务的拦截器永远在最前面

推荐读物

《Spring 技术内幕》 – 计文柯

这本书我反复读了3遍以上。虽然书是12年出版的,基于Spring Framework 4.X 进行讲解,版本有些旧。但是,当你读完这本书再去看 Spring Framework 5.x 你会发现书上讲的spring核心思想在最新版本中并没有发生太多变化,只是有了些增强。在我们对Spring核心还不太了解的时候如果直接上手最新版本可能会有些复杂,因为有很多优化实现,这样容易让我们陷入细节太深不太能看到系统的全貌。

这篇关于避坑:@Around与@Transactional混用导致事务不回滚的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!