C/C++教程

Elasticsearch使用系列-基本查询和聚合查询+sql插件

本文主要是介绍Elasticsearch使用系列-基本查询和聚合查询+sql插件,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

Elasticsearch使用系列-ES简介和环境搭建

Elasticsearch使用系列-ES增删查改基本操作+ik分词

Elasticsearch使用系列-基本查询和聚合查询+sql插件

一、基本查询

1.And查询must

GET user2/_search
{
  "query": {
    "bool":{
      "must": [
        {
          "match": {
            "name": "张三"
          }
        },
        {
          "match": {
            "hobby": "钓鱼"
          }
        }
        
      ]
    }
  },
  "_source": ["name","age","hobby"],
  "sort": [
    { "age": {"order": "desc"}},
     { "name2": {"order": "asc"}}
  ],
  "from": 0,
  "size": 20
}
  • bool :And查询属于bool查询,must里面带And的查询条件。
  • _source:要查询的字段
  • sort:对查询结果排序
  • from:分页查询,跳过多少条
  • size:分页查询,一页查多少条

2.or查询should

GET user2/_search
{
  "query": {
    "bool":{
      "should": [
        {
          "match": {
            "name": "张三"
          }
        },
        {
          "match": {
            "hobby": "钓鱼"
          }
        }
        
      ]
    }
  }
}
  • bool:or查询属于bool查询
  • should:里面放or的查询条件

3.排除查询 must_not

#查询名字不等于张三
GET user2/_search
{
  "query": {
    "bool":{
      "must_not": [
        {
          "match": {
            "name": "张三"
          }
        }
        
      ]
    }
  }
}

 4.过滤查询filter

#查询名字等于张三,年龄大于等于10小于等于20
GET user2/_search
{
  "query": {
    "bool":{
      "must": [
        {
          "match": {
            "name": "张三"
          }
        }
        
      ],
      "filter": [
        {"range": {
          "age": {
            "gte": 10,
            "lte": 20
          }
        }}
      ]
    }
    
  }
}
  • filter:过滤条件,先过滤数据再查询结果
  • range:范围查询,和term,match是同类的查询。
  • gte:大于等于
  • gt:大于
  • lte:小于等于
  • lt:小于

5.同字段多值查询

GET user2/_search
{
  "query": {
     "terms": {
           "name2": ["张三","李四"]
         }
  }
}

 

#text类型的多值查询,空格隔开
GET user2/_search
{
  "query": {
    "match": {
           "name": "张三 李四"
         }
  }
}

6.高亮查询highlight

高亮查询,就是平时搜索东西时,搜索结果会把你的关键词匹配到的显示颜色,像下图一样。

 

 

 

高亮展示的数据,本身就是文档中的一个field,单独将field以highlight的形式返回给你。
ES提供了一个highlight属性,和query同级别的。

  • pre_tag:指定前缀标签,如 <font color="red">
  • post_tags:指定后缀标签,如 </font>
  • fields:指定那个字段为高亮字段

 

 

 查出来后,显示hobby字段的地方,就直接用高亮的hobby展示就行了。

二、聚合查询

bucket:分组后统计,类似于Mysql中的group by 

metric:对分组统计的结果,计算最大值,最小值,平均值等,类似于Mysql中的max(),min(),avg()函数的值。

1.准备数据

创建索引

PUT employee
{
  "mappings": {
    "properties": {
      "id": {
        "type": "integer"
      },
      "name": {
        "type": "keyword"
      },
      "job": {
        "type": "keyword"
      },
      "age": {
        "type": "integer"
      },
      "gender": {
        "type": "keyword"
      }
    }
  }
}

批量插入数据

PUT employee/_bulk
{"index": {"_id": 1}}
{"id": 1, "name": "Bob", "job": "java", "age": 21, "sal": 8000, "gender": "male"}
{"index": {"_id": 2}}
{"id": 2, "name": "Rod", "job": "html", "age": 31, "sal": 18000, "gender": "female"}
{"index": {"_id": 3}}
{"id": 3, "name": "Gaving", "job": "java", "age": 24, "sal": 12000, "gender": "male"}
{"index": {"_id": 4}}
{"id": 4, "name": "King", "job": "dba", "age": 26, "sal": 15000, "gender": "female"}
{"index": {"_id": 5}}
{"id": 5, "name": "Jonhson", "job": "dba", "age": 29, "sal": 16000, "gender": "male"}
{"index": {"_id": 6}}
{"id": 6, "name": "Douge", "job": "java", "age": 41, "sal": 20000, "gender": "female"}
{"index": {"_id": 7}}
{"id": 7, "name": "cutting", "job": "dba", "age": 27, "sal": 7000, "gender": "male"}
{"index": {"_id": 8}}
{"id": 8, "name": "Bona", "job": "html", "age": 22, "sal": 14000, "gender": "female"}
{"index": {"_id": 9}}
{"id": 9, "name": "Shyon", "job": "dba", "age": 20, "sal": 19000, "gender": "female"}
{"index": {"_id": 10}}
{"id": 10, "name": "James", "job": "html", "age": 18, "sal": 22000, "gender": "male"}
{"index": {"_id": 11}}
{"id": 11, "name": "Golsling", "job": "java", "age": 32, "sal": 23000, "gender": "female"}
{"index": {"_id": 12}}
{"id": 12, "name": "Lily", "job": "java", "age": 24, "sal": 2000, "gender": "male"}
{"index": {"_id": 13}}
{"id": 13, "name": "Jack", "job": "html", "age": 23, "sal": 3000, "gender": "female"}
{"index": {"_id": 14}}
{"id": 14, "name": "Rose", "job": "java", "age": 36, "sal": 6000, "gender": "female"}
{"index": {"_id": 15}}
{"id": 15, "name": "Will", "job": "dba", "age": 38, "sal": 4500, "gender": "male"}
{"index": {"_id": 16}}
{"id": 16, "name": "smith", "job": "java", "age": 32, "sal": 23000, "gender": "male"}

2.分组统计

查询员工各种语言数量,相当于group by

#查询员工各种语言数量
GET employee/_search
{
  "size": 0,
  "aggs": {
    "languge_count": {
      "terms": {
        "field": "job"
      }
    }
  }
}

 

  •  size:0表示只要统计后的结果,原始数据不展现,如果是大于0,则会返回多少条原始数据
  •  aggs:固定语法
  •  languge_count:自定义的分组名称,可以随便写
  •  terms:按什么字段进行分组
  •  field:具体的字段名称

3.平均值,最大值,最小值,求和统计

GET employee/_search
{
  "size": 0,
  "aggs": {
    "language_count": {
      "terms": {
        "field": "job"
      },
      "aggs":{
        "age_avg":{
          "avg":{
            "field": "age"
          }
        }
      }
    }
  }
}

 

 

  • aggs:固定写法
  • age_avg:自定义统计名称,随便写
  • avg:平均值,其他有 max:最大值,min:最小值,sum:求和
  • fileld:要计算的字段

4.分段统计

#按年龄区间分段统计
GET employee/_search
{
  "size": 0,
  "aggs": {
    "language_count": {
      "histogram": {
        "field": "age",
        "interval": 10
      },
      "aggs":{
        "age_avg":{
          "sum":{
            "field": "age"
          }
        }
      }
    }
  }
}

 

 

 

 

 

  • histogram:分段统计
  • interval:分段间隔

5.日期分段统计

#按月份统计生日人数
GET employee/_search
{
  "size": 0,
  "aggs": {
    "language_count": {
      "date_histogram": {
        "field": "borthday",
        "interval": "month",
        "format": "yyyy-MM-dd",
        "min_doc_count": 0,
        "extended_bounds": {
          "min": "1970-10-01",
          "max": "2022-12-31"
        }
        
      }
    }
  }
}
  • date_histogram:日期分段统计函数
  • field:聚合分组的字段,类型需要为date
  • interval:按什么时间聚合,interval字段支持多种关键字:year, quarter(季度), month, week, day, hour, minute, second,
  • format:返回值格式化
  • min_doc_count:0分组后没数据的也显示,最小有多少条才显示
  • extended_bounds:强制规定最小值和最大值界限,ES默认把有数据的最小值开始做开始界限

6.同时统计多个集合

#分别统计年龄和性别
GET employee/_search
{
  "size": 0,
  "aggs": {
    "language_count": {
      "histogram": {
        "field": "age",
        "interval": 10
      },
      "aggs":{
        "age_avg":{
          "sum":{
            "field": "age"
          }
        }
      }
    },
    "gender_count":{
      "terms": {
        "field": "gender"
      }
    }
  }
}

三、sql插件

1.插件安装

上面的查询语句为DSL查询,sql插件可以编写sql语句,然后自动解析为DSL语句查询

sql插件github地址:https://github.com/NLPchina/elasticsearch-sql

 

 

 

 下载的对应es的版本。

解压后放到 plugins 文件夹并改名为sql,然后重启es

 

2.sql语句查询

2.1普通查询

GET /_sql?format=txt
{
  "query": "select * from employee where job='java'"
  
}

 

 

 2.2其他查询写法

#普通查询  
SELECT * FROM bank WHERE age >30 AND gender = 'm'
#聚合查询(分组统计)
select COUNT(*),SUM(age),MIN(age) as m, MAX(age),AVG(age)
  FROM bank GROUP BY gender ORDER BY SUM(age), m DESC
#删除 
DELETE FROM bank WHERE age >30 AND gender = 'm'

更多的查询看sql插件的github地址最下面的说明

 

这篇关于Elasticsearch使用系列-基本查询和聚合查询+sql插件的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!