《AutoRec: Autoencoders Meet Collaborative Filtering》是2015年Suvash等人发表在“The Web Conference”会议上的一篇论文,作者提出用自编码器预测用户对电影的评分。论文比较短,只有两页,可以说是深度学习在推荐系统领域应用的开端。
本文提出了一个新颖的基于自编码器的协同过滤框架——AutoRec。实验表明,AutoRec在Movielens数据集上的表现优于目前最好的方法(矩阵分解、受限玻尔兹曼机、LLORMA)。
假设有\(m\)个用户,\(n\)个商品,并且有用户对商品的评分矩阵\(R\in \mathbb{R}^{m\times n}\),则用户\(u\)对所有商品的评分可以用不完全的向量\(r^{(u)}={R_{u1},...,R_{u2}}\)表示(不完全意思是,\(r^{(u)}\)中的元素有的是真实的评分数据,有的是需要我们预测的)。自编码器的作用就是将\(r^{(u)}\)作为输入数据,经过编码器将向量映射维一个低维的向量,然后通过解码器重构输出向量,使输出向量趋近于输入向量,同时能够补全原始输入向量中的缺失值。自编码器模型可以表示为:
\[min\sum_{r\in S}^{}\left \| r-h(r;\theta ) \right \|^{2}_{2} \]完整代码及数据集已上传至github
import os import torch import numpy as np import pandas as pd import torch.nn as nn import torch.utils.data as Data import matplotlib.pyplot as plt os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' col_name = ["userid", "movieid", "rating", "timestrap"] u1_base_path = "data/u1.base" u1_base = pd.read_table(u1_base_path, sep='\t', header=None, names=col_name) # print(u1_base.head(5)) u1_test_path = "data/u1.test" u1_test = pd.read_table(u1_test_path, sep='\t', header=None, names=col_name) # print(u1_test.head(5)) # 将数据转换为 user-item 交互矩阵 def TranslateData(data): user_num = data.userid.nunique() # 用户的个数 movie_num = 1682 # 电影个数(数据中标明的所有电影数) data_mat = np.zeros(user_num * movie_num).reshape((-1, movie_num)) + 3 k = 0 for i in range(data.shape[0]): data_mat[k][data.iloc[i, 1] - 1] = data.iloc[i, 2] if i > 0 and data.iloc[i, 0] != data.iloc[i - 1, 0]: k += 1 return data_mat class AutoRec(nn.Module): def __init__(self, input_num, hidden_num): super(AutoRec, self).__init__() self.input_num = input_num self.hidden_num = hidden_num self.encoder = nn.Linear(self.input_num, self.hidden_num, bias=True) self.relu = nn.ReLU() self.decoder = nn.Linear(self.hidden_num, self.input_num, bias=True) def forward(self, x): hidden = self.encoder(x) hidden = self.relu(hidden) out = self.decoder(hidden) return out def GetData(data_mat): dataset = Data.TensorDataset(torch.tensor(data_mat, dtype=torch.float32), torch.zeros(data_mat.shape[0], 1).view(-1, 1)) loader = Data.DataLoader( dataset=dataset, batch_size=64, shuffle=False ) return loader epochs = 100 input_num, hidden_num = 1682, 200 model = AutoRec(input_num, hidden_num) learning_rate = 0.0003 optimizer = torch.optim.Adam([ {'params': (p for name, p in model.named_parameters() if 'bias' not in name)}, {'params': (p for name, p in model.named_parameters() if 'bias' in name), 'weight_decay': 0.} ], lr=learning_rate, weight_decay=0.001) loss_func = torch.nn.MSELoss() loss_train_set = [] loss_test_set = [] def run(): train() draw(loss_train_set) def train(): train_data_mat = TranslateData(u1_base) r = train_data_mat[0] train_loader = GetData(train_data_mat) for epoch in range(epochs): rmse_loss = 0 for step, (X, y) in enumerate(train_loader): out = model(X) rmse_loss = torch.sqrt(loss_func(out, X)) rmse_loss.backward() optimizer.step() loss_train_set.append(rmse_loss) if epoch % 100 == 0: print("epoch %d" % (epoch + 1)) test() def test(): test_data_mat = TranslateData(u1_test) test_loader = GetData(test_data_mat) with torch.no_grad(): rmse_loss = 0 for step, (X, y) in enumerate(test_loader): out = model(X) rmse_loss += torch.sqrt(loss_func(out, X)) print("test_loss: %f" % (rmse_loss / test_data_mat.shape[0])) def draw(loss_train_set): x = [i for i in range(len(loss_train_set))] plt.plot(x, loss_train_set, label="Training loss") plt.xlabel("epochs") plt.ylabel("rmse") plt.legend() plt.show() if __name__ == "__main__": run()