Scipy插值

Scipy插值

在本章中,我们将讨论插值,及如何在SciPy中使用它。

插值是什么?

插值是在直线或曲线上的两点之间找到值的过程。 为了帮助记住它的含义,我们应该将“inter”这个词的第一部分想象为“输入”,表示要查看原来数据的“内部”。 这种插值工具不仅适用于统计学,而且在科学,商业或需要预测两个现有数据点内的值时也很有用。

下面创建一些数据,看看如何使用scipy.interpolate包进行插值。

import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
x = np.linspace(0, 4, 12)
y = np.cos(x**2/3+4)
print (x,y)

执行上面示例代码,得到以下结果 -

[ 0.          0.36363636  0.72727273  1.09090909  1.45454545  1.81818182
  2.18181818  2.54545455  2.90909091  3.27272727  3.63636364  4.        ] [-0.65364362 -0.61966189 -0.51077021 -0.31047698 -0.00715476  0.37976236
  0.76715099  0.99239518  0.85886263  0.27994201 -0.52586509 -0.99582185]

现在,有两个数组。 假设这两个数组作为空间点的两个维度,使用下面的程序进行绘图,并看看它们的样子。

plt.plot(x, y,’o’)
plt.show()

上述程序将生成以下输出 -

一维插值

scipy.interpolate中的interp1d类是一种创建基于固定数据点的函数的便捷方法,可以使用线性插值在给定数据定义的域内的任意位置评估该函数。

通过使用上述数据,创建一个插值函数并绘制一个新的插值图。

f1 = interp1d(x, y,kind = 'linear')

f2 = interp1d(x, y, kind = 'cubic')

使用interp1d函数,创建了两个函数f1f2。 这些函数对于给定的输入x返回y。 第三种变量类型表示插值技术的类型。 ‘线性’,’最近’,’零’,’线性’,’二次’,’立方’是一些插值技术。

现在,创建更多长度的新输入以查看插值的明显区别。 对新数据使用旧数据的相同功能。

xnew = np.linspace(0, 4,30)

plt.plot(x, y, 'o', xnew, f1(xnew), '-', xnew, f2(xnew), '--')

plt.legend(['data', 'linear', 'cubic','nearest'], loc = 'best')

plt.show()

上述程序将生成以下输出 -

样条曲线

为了通过数据点画出平滑的曲线,绘图员曾经使用薄的柔性木条,硬橡胶,金属或塑料称为机械样条。 为了使用机械花键,在设计中沿着曲线明确选择了一些销钉,然后将花键弯曲,以便它们接触到每个销钉。

显然,在这种结构下,样条曲线在这些引脚上插入曲线。 它可以用来在其他图纸中重现曲线。 引脚所在的点称为结。 可以通过调整结点的位置来改变样条线所定义的曲线的形状。

单变量样条

一维平滑样条拟合一组给定的数据点。 Scipy.interpolate中的UnivariateSpline类是创建基于固定数据点类的函数的便捷方法 - scipy.interpolate.UnivariateSpline(x,y,w = None,bbox = [None,None],k = 3,s = None,ext = 0,check_finite = False)

下面来看看一个例子。

import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline
x = np.linspace(-3, 3, 50)
y = np.exp(-x**2) + 0.1 * np.random.randn(50)
plt.plot(x, y, 'ro', ms = 5)
plt.show()

使用平滑参数的默认值。效果如下 -

spl = UnivariateSpline(x, y)
xs = np.linspace(-3, 3, 1000)
plt.plot(xs, spl(xs), 'g', lw = 3)
plt.show()

手动更改平滑量。效果如下 -

spl.set_smoothing_factor(0.5)
plt.plot(xs, spl(xs), 'b', lw = 3)
plt.show()

效果如下 -