C/C++教程

【pytorch】深度学习

本文主要是介绍【pytorch】深度学习,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

【视频来源】

一 python安装环境

pycharm+anaconda

二 创建python虚拟环境以及pip国内源设置 

1创建:

目前兼容性比较好的版本

conda create -n py38 python=3.8

问题1:Collecting package metadata (current_repodata.json): faile 解决方案一

问题2:终端前有PS 输入CMD(PS表示pycharm用的终端是powershell.exe,如果需要转换为cmd.exe)

2激活

conda activate py38

>>>:命令交互符

CTRL+Z:回到命令行

3 设置pip国内源

(1)pip 的配置文件位置

  • linux/mac 系统
    • 在用户目录下的 .pip/pip.conf 位置
  • windows 系统
    • 在C盘用户目录下,建立 .pip/pip.ini 文件

(2)配置文件内容

阿里

[global]
trusted-host = mirrors.aliyun.com
index-url = https://mirrors.aliyun.com/pypi/simple

豆瓣

[global]
trusted-host = pypi.douban.com
index-url = https://pypi.douban.com/simple/ 

清华

[global]
trusted-host = pypi.tuna.tsinghua.edu.cn
index-url = https://pypi.tuna.tsinghua.edu.cn/simple

三  PyCharm基本用法及设置解释器

四 实例1:手写字符识别

源代码:https://github.com/mivlab/AI_course

pip3 install torch torchvision torchaudio
pip install opencv-python

train_mnist.py

import torch
import math
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms, models
import argparse
import os
from torch.utils.data import DataLoader

from dataloader import mnist_loader as ml
from models.cnn import Net
from toonnx import to_onnx


parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--datapath', required=True, help='data path')
parser.add_argument('--batch_size', type=int, default=256, help='training batch size')
parser.add_argument('--epochs', type=int, default=30, help='number of epochs to train')
parser.add_argument('--use_cuda', default=False, help='using CUDA for training')

args = parser.parse_args()
args.cuda = args.use_cuda and torch.cuda.is_available()
if args.cuda:
    torch.backends.cudnn.benchmark = True


def train():
    os.makedirs('./output', exist_ok=True)
    if True: #not os.path.exists('output/total.txt'):
        ml.image_list(args.datapath, 'output/total.txt')
        ml.shuffle_split('output/total.txt', 'output/train.txt', 'output/val.txt')

    train_data = ml.MyDataset(txt='output/train.txt', transform=transforms.ToTensor())
    val_data = ml.MyDataset(txt='output/val.txt', transform=transforms.ToTensor())
    train_loader = DataLoader(dataset=train_data, batch_size=args.batch_size, shuffle=True)
    val_loader = DataLoader(dataset=val_data, batch_size=args.batch_size)

    model = Net()
    #model = models.resnet18(num_classes=10)  # 调用内置模型
    #model.load_state_dict(torch.load('./output/params_10.pth'))
    #from torchsummary import summary
    #summary(model, (3, 28, 28))

    if args.cuda:
        print('training with cuda')
        model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=1e-3)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [10, 20], 0.1)
    loss_func = nn.CrossEntropyLoss()

    for epoch in range(args.epochs):
        # training-----------------------------------
        model.train()
        train_loss = 0
        train_acc = 0
        for batch, (batch_x, batch_y) in enumerate(train_loader):
            if args.cuda:
                batch_x, batch_y = Variable(batch_x.cuda()), Variable(batch_y.cuda())
            else:
                batch_x, batch_y = Variable(batch_x), Variable(batch_y)
            out = model(batch_x)  # 256x3x28x28  out 256x10
            loss = loss_func(out, batch_y)
            train_loss += loss.item()
            pred = torch.max(out, 1)[1]
            train_correct = (pred == batch_y).sum()
            train_acc += train_correct.item()
            print('epoch: %2d/%d batch %3d/%d  Train Loss: %.3f, Acc: %.3f'
                  % (epoch + 1, args.epochs, batch, math.ceil(len(train_data) / args.batch_size),
                     loss.item(), train_correct.item() / len(batch_x)))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        scheduler.step()  # 更新learning rate
        print('Train Loss: %.6f, Acc: %.3f' % (train_loss / (math.ceil(len(train_data)/args.batch_size)),
                                               train_acc / (len(train_data))))

        # evaluation--------------------------------
        model.eval()
        eval_loss = 0
        eval_acc = 0
        for batch_x, batch_y in val_loader:
            if args.cuda:
                batch_x, batch_y = Variable(batch_x.cuda()), Variable(batch_y.cuda())
            else:
                batch_x, batch_y = Variable(batch_x), Variable(batch_y)

            out = model(batch_x)
            loss = loss_func(out, batch_y)
            eval_loss += loss.item()
            pred = torch.max(out, 1)[1]
            num_correct = (pred == batch_y).sum()
            eval_acc += num_correct.item()
        print('Val Loss: %.6f, Acc: %.3f' % (eval_loss / (math.ceil(len(val_data)/args.batch_size)),
                                             eval_acc / (len(val_data))))
        # save model --------------------------------
        if (epoch + 1) % 1 == 0:
            # torch.save(model, 'output/model_' + str(epoch+1) + '.pth')
            torch.save(model.state_dict(), 'output/params_' + str(epoch + 1) + '.pth')
            #to_onnx(model, 3, 28, 28, 'params.onnx')

if __name__ == '__main__':
    train()

test_mnist.py

import torch
import cv2
from torch.autograd import Variable
from torchvision import transforms
from models.cnn import Net
from toonnx import to_onnx

use_cuda = False
model = Net()
model.load_state_dict(torch.load('output/params_1.pth'))
# model = torch.load('output/model.pth')
model.eval()
if use_cuda and torch.cuda.is_available():
    model.cuda()

to_onnx(model, 3, 28, 28, 'output/params.onnx')

img = cv2.imread('4_00440.jpg')
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.unsqueeze(0)
if use_cuda and torch.cuda.is_available():
    prediction = model(Variable(img_tensor.cuda()))
else:
    prediction = model(Variable(img_tensor))
pred = torch.max(prediction, 1)[1]
print(pred)
cv2.imshow("image", img)
cv2.waitKey(0)

 

五 实例2:手写字符识别

这篇关于【pytorch】深度学习的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!