Java教程

银行分控模型的建立

本文主要是介绍银行分控模型的建立,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!
 

SVM算法实现

# -*- coding: utf-8 -*-

from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from matplotlib import pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
data_load = "bankloan.xls"
data = pd.read_excel(data_load)
data.describe()
data.columns
data.index
## 转为np 数据切割
X = np.array(data.iloc[:,0:-1])
y = np.array(data.iloc[:,-1])
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, train_size=0.8, test_size=0.2, shuffle=True)
svm = svm.SVC()
svm.fit(X_test,y_test)
y_pred = svm.predict(X_test)
accuracy_score(y_test, y_pred)
print(accuracy_score(y_test, y_pred))
cm = confusion_matrix(y_test, y_pred)
heatmap = sns.heatmap(cm, annot=True, fmt='d')
heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right')
heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right')
plt.ylabel("true label")
plt.xlabel("predict label")
plt.show()

  

运行结果  

 

 

 cm_polt函数

# -*- coding: utf-8 -*-

def cm_plot(y, yp):
    from sklearn.metrics import confusion_matrix  # 导入混淆矩阵函数

    cm = confusion_matrix(y, yp)  # 混淆矩阵

    import matplotlib.pyplot as plt  # 导入作图库
    plt.matshow(cm, cmap=plt.cm.Greens)  # 画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。
    plt.colorbar()  # 颜色标签

    for x in range(len(cm)):  # 数据标签
        for y in range(len(cm)):
            plt.annotate(cm[x, y], xy=(x, y), horizontalalignment='center', verticalalignment='center')

    plt.ylabel('True label')  # 坐标轴标签
    plt.xlabel('Predicted label')  # 坐标轴标签
    return plt

  ANNS算法实现

# -*- coding: utf-8 -*-

import pandas as pd
import numpy as np
#导入划分数据集函数
from sklearn.linear_model import LogisticRegression as LR
from sklearn.model_selection import train_test_split
#读取数据
datafile = 'bankloan.xls'#文件路径
data = pd.read_excel(datafile)
x = data.iloc[:,:8]
y = data.iloc[:,8]
#划分数据集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=100)
#导入模型和函数
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout
#导入指标
from tensorflow.keras.metrics import BinaryAccuracy
#导入时间库计时
import time
start_time = time.time()
#-------------------------------------------------------#
model = Sequential()
model.add(Dense(input_dim=8,units=800,activation='relu'))#激活函数relu
model.add(Dropout(0.5))#防止过拟合的掉落函数
model.add(Dense(input_dim=800,units=400,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(input_dim=400,units=1,activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam',metrics=[BinaryAccuracy()])
model.fit(x_train,y_train,epochs=100,batch_size=128)    #调参 epochs:训练次数,此处为100次
loss,binary_accuracy = model.evaluate(x,y,batch_size=128)
#--------------------------------------------------------#
end_time = time.time()
run_time = end_time-start_time#运行时间

print('模型运行时间:{}'.format(run_time))
print('模型损失值:{}'.format(loss))
print('模型精度:{}'.format(binary_accuracy))

yp = model.predict(x).reshape(len(y))
yp = np.around(yp,0).astype(int) #转换为整型
from cm_plot import *  # 导入自行编写的混淆矩阵可视化函数

cm_plot(y,yp).show()  # 显示混淆矩阵可视化结果

  运行结果

 

 

 

这篇关于银行分控模型的建立的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!