The quadratic equation is as follows:
$ax^2+bx+c=0$
The quadratic formula tells us that the solutions to this equation is
$x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}$
So let's apply it to some problem.
Let's start off with something that we could have factored just to verify that it's giving us the same answer.
$x^2+4x-21=0$
$a=1, b=4, c=-21$
$x = \frac{-4\pm\sqrt{4^2-4\cdot1\cdot(-21)}}{2\cdot1}$
$x=\frac{-4\pm\sqrt{16+84}}{2}$
$x=\frac{-4\pm\sqrt{100}}{2}$
$x=\frac{-4\pm10}{2}$
$x=-2\pm5$
So: $x=3$ or $x=-7$
Sothe quadratic formula seems to have given us an answer for this. You can verify just by substituting back in that these do work.
$(x+7)\cdot(x-3)=0$
$x+7=0$ or $x-3=0$
$x=-7$ or $x=3$
$ax^2+bx+c=0$ $(a>0)$
Dividing everything by a and you got :
$x^2+\frac{b}{a}x+\frac{c}{a}=0$
$x^2+\frac{b}{a}x=-\frac{c}{a}$
Let's complete the square, just take $\frac12$ of coefficient on the x term and square it as following:
$x^2+\frac{b}{a}x+(\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2$
$(x+\frac{b}{2a})^2=-\frac{c}{a}+(\frac{b}{2a})^2$
$(x+\frac{b}{2a})^2=-\frac{c}{a}+\frac{b^2}{4a^2}$
$(x+\frac{b}{2a})^2=\frac{b^2}{4a^2}-\frac{c}{a}$
$(x+\frac{b}{2a})^2=\frac{b^2}{4a^2}-\frac{4ac}{4a^2}$
$(x+\frac{b}{2a})^2=\frac{b^2 - 4ac}{4a^2}$
$x+\frac{b}{2a}=\pm\sqrt\frac{b^2 - 4ac}{4a^2}$
$x+\frac{b}{2a}=\pm\frac{\sqrt{b^2 - 4ac}}{2a}$
$x=-\frac{b}{2a}\pm\frac{\sqrt{b^2 - 4ac}}{2a}$
$x=\frac{-b}{2a}\pm\frac{\sqrt{b^2 - 4ac}}{2a}$
$x=\frac{{-b}\pm{\sqrt{b^2 - 4ac}}}{2a}$
References: The quadratic formula Proof of the quadratic formula