文末源码,阅读大约2.8分钟
傻瓜式教程 - 体验滑块,提供练习场景及源码。
@
目录安装python需要的依赖包
cv2 安装可以参考这里:https://javapub.blog.csdn.net/article/details/123656345
安装webdriver -> chrome
下载对应版本,放在本地 D:\anaconda3\Scripts 目录下
https://registry.npmmirror.com/binary.html?path=chromedriver
GIF效果:https://tva2.sinaimg.cn/large/007F3CC8ly1h0ku3yh9g5g31ex0pfwus.gif
cv2使用参考:https://blog.csdn.net/RNG_uzi_/article/details/90034485
注意:测试时慢点刷,容易封IP。
有问题可以留言探讨,公众号:JavaPub
对源码加了大量注释
测试网站:http://app.miit-eidc.org.cn/miitxxgk/gonggao/xxgk/queryCpParamPage?dataTag=Z&gid=U3119671&pc=303
import os import cv2 import time import random import requests import numpy as np from PIL import Image from io import BytesIO from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver import ActionChains from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC class CrackSlider(): def __init__(self): # self.browser = webdriver.Edge() self.browser = webdriver.Chrome() self.s2 = r'//*[@id="captcha_div"]/div/div[1]/div/div[1]/img[1]' self.s3 = r'//*[@id="captcha_div"]/div/div[1]/div/div[1]/img[2]' self.url = 'http://app.miit-eidc.org.cn/miitxxgk/gonggao/xxgk/queryCpParamPage?dataTag=Z&gid=U3119671&pc=303' # 测试网站 self.wait = WebDriverWait(self.browser, 20) self.browser.get(self.url) # 保存俩张图片 def get_img(self, target, template, xp): time.sleep(3) target_link = self.browser.find_element_by_xpath(self.s2).get_attribute("src") template_link = self.browser.find_element_by_xpath(self.s3).get_attribute("src") target_img = Image.open(BytesIO(requests.get(target_link).content)) template_img = Image.open(BytesIO(requests.get(template_link).content)) target_img.save(target) template_img.save(template) size_loc = target_img.size print('size_loc[0]-----\n') print(size_loc[0]) zoom = xp / int(size_loc[0]) # 耦合像素 print('zoom-----\n') print(zoom) return zoom def change_size(self, file): image = cv2.imread(file, 1) # 读取图片 image_name应该是变量 img = cv2.medianBlur(image, 5) # 中值滤波,去除黑色边际中可能含有的噪声干扰。去噪。 b = cv2.threshold(img, 15, 255, cv2.THRESH_BINARY) # 调整裁剪效果,二值化处理。 binary_image = b[1] # 二值图--具有三通道 binary_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY) x, y = binary_image.shape edges_x = [] edges_y = [] for i in range(x): for j in range(y): if binary_image[i][j] == 255: edges_x.append(i) edges_y.append(j) left = min(edges_x) # 左边界 right = max(edges_x) # 右边界 width = right - left # 宽度 bottom = min(edges_y) # 底部 top = max(edges_y) # 顶部 height = top - bottom # 高度 pre1_picture = image[left:left + width, bottom:bottom + height] # 图片截取 return pre1_picture # 返回图片数据 # 匹配比对俩图距离 def match(self, target, template): img_gray = cv2.imread(target, 0) img_rgb = self.change_size(template) template = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) # 图片格式转换为灰度图片 # cv2.imshow('template', template) # cv2.waitKey(0) res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) # 匹配模式,匹配图片 run = 1 # 使用二分法查找阈值的精确值 L = 0 R = 1 while run < 20: run += 1 threshold = (R + L) / 2 if threshold < 0: print('Error') return None loc = np.where(res >= threshold) if len(loc[1]) > 1: L += (R - L) / 2 elif len(loc[1]) == 1: break elif len(loc[1]) < 1: R -= (R - L) / 2 res = loc[1][0] print('match distance-----\n') print(res) return res def move_to_gap(self, tracks): slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'yidun_slider'))) ActionChains(self.browser).click_and_hold(slider).perform() #element = self.browser.find_element_by_xpath(self.s3) #ActionChains(self.browser).click_and_hold(on_element=element).perform() while tracks: x = tracks.pop(0) print('tracks.pop(0)-----\n') print(x) ActionChains(self.browser).move_by_offset(xoffset=x, yoffset=0).perform() #ActionChains(self.browser).move_to_element_with_offset(to_element=element, xoffset=x, yoffset=0).perform() #time.sleep(0.01) time.sleep(0.05) ActionChains(self.browser).release().perform() def move_to_gap1(self, distance): distance += 46 time.sleep(1) element = self.browser.find_element_by_xpath(self.s3) ActionChains(self.browser).click_and_hold(on_element=element).perform() ActionChains(self.browser).move_to_element_with_offset(to_element=element, xoffset=distance, yoffset=0).perform() #ActionChains(self.browser).release().perform() time.sleep(1.38) ActionChains(self.browser).release(on_element=element).perform() def move_to_gap2(self, distance): element = self.browser.find_elements_by_class_name("yidun_slider")[0] action = ActionChains(self.browser) mouse_action = action.click_and_hold(on_element=element) distance += 11 distance = int(distance * 32/33) move_steps = int(distance/4) for i in range(0,move_steps): mouse_action.move_by_offset(4,random.randint(-5,5)).perform() time.sleep(0.1) mouse_action.release().perform() # 计算出先加速、后加速的数组 def get_tracks(self, distance, seconds, ease_func): distance += 20 tracks = [0] offsets = [0] for t in np.arange(0.0, seconds, 0.1): ease = ease_func print('ease-----\n') print(ease) offset = round(ease(t / seconds) * distance) print('offset-----\n') print(offset) tracks.append(offset - offsets[-1]) print('offset - offsets[-1]-----\n') print(offset - offsets[-1]) offsets.append(offset) print('offsets-----\n') print(offsets) tracks.extend([-3, -2, -3, -2, -2, -2, -2, -1, -0, -1, -1, -1]) return tracks def get_tracks1(self,distance): """ 根据偏移量获取移动轨迹 :param distance: 偏移量 :return: 移动轨迹 """ # 移动轨迹 track = [] # 当前位移 current = 0 # 减速阈值 mid = distance * 4 / 5 # 计算间隔 t = 0.2 # 初速度 v = 0 while current < distance: if current < mid: # 加速度为正 2 a = 4 else: # 加速度为负 3 a = -3 # 初速度 v0 v0 = v # 当前速度 v = v0 + at v = v0 + a * t # 移动距离 x = v0t + 1/2 * a * t^2 move = v0 * t + 1 / 2 * a * t * t # 当前位移 current += move # 加入轨迹 track.append(round(move)) return track def ease_out_quart(self, x): res = 1 - pow(1 - x, 4) print('ease_out_quart-----\n') print(res) return res # 发生意外,请留言。https://javapub.blog.csdn.net/article/details/123730597 if __name__ == '__main__': xp = 320 # 验证码的像素-长 target = 'target.jpg' # 临时保存的图片名 template = 'template.png' # 临时保存的图片名 cs = CrackSlider() zoom = cs.get_img(target, template, xp) distance = cs.match(target, template) track = cs.get_tracks((distance + 7) * zoom, random.randint(2, 4), cs.ease_out_quart) #track = cs.get_tracks1(distance) #track = cs.get_tracks((distance + 7) * zoom, random.randint(1, 2), cs.ease_out_quart) cs.move_to_gap(track) #cs.move_to_gap1(distance) #cs.move_to_gap2(distance) time.sleep(2) #cs.browser.close()
同名公众号,更多工具解决方案