给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 :
输入:nums = [2,7,11,15], target = 9 输出:[0,1] 解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
方法一:暴力枚举
思路及算法
最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。
当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。
代码
class Solution { public int[] twoSum(int[] nums, int target) { int n=nums.length; for(int i=0;i<n;++i){ for(int j=i+1;j<n;++j){ if(nums[i]+nums[j]==target){ return new int[]{i,j}; } } } return new int[0]; } }
复杂度分析
时间复杂度:O(N^2)O(N
2
),其中 NN 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。
空间复杂度:O(1)O(1)。
方法二:哈希表
思路及算法
注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。
使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N)O(N) 降低到 O(1)O(1)。
这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。
代码
class Solution { public int[] twoSum(int[] nums, int target) { int len=nums.length; Map<Integer,Integer>hashMap=new HashMap<>(len-1); hashMap.put(nums[0],0); for (int i = 1; i < len ; i++) { int another=target-nums[i]; if (hashMap.containsKey(another)){ return new int[]{i,hashMap.get(another)}; } hashMap.put(nums[i],i); } throw new IllegalArgumentException("No Two Num solution"); } }
复杂度分析
时间复杂度:O(N)O(N),其中 NN 是数组中的元素数量。对于每一个元素 x,我们可以 O(1)O(1) 地寻找 target - x。
空间复杂度:O(N)O(N),其中 NN 是数组中的元素数量。主要为哈希表的开销。