@author: Mint """ import math import numpy as np import pandas as pd from pandas import DataFrame y =[0.14 ,0.64 ,0.28 ,0.33 ,0.12 ,0.03 ,0.02 ,0.11 ,0.08 ] x1 =[0.29 ,0.50 ,0.00 ,0.21 ,0.10 ,0.06 ,0.13 ,0.24 ,0.28 ] x2 =[0.23 ,0.62 ,0.53 ,0.53 ,0.33 ,0.15 ,0.03 ,0.23 ,0.03 ] theata = [-1,-1,0,-1,-1,0,-1,0,-1] x = np.array([x1,x2,theata]) W_mid = DataFrame(0.5,index=['input1','input2','theata'],columns=['mid1','mid2','mid3','mid4']) W_out = DataFrame(0.5,index=['input1','input2','input3','input4','theata'],columns=['a']) def sigmoid(x): #映射函数 return 1/(1+math.exp(-x)) #训练神经元 def train(W_out, W_mid,data,real): #中间层神经元输入和输出层神经元输入 Net_in = DataFrame(data,index=['input1','input2','theata'],columns=['a']) Out_in = DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) Out_in.loc['theata'] = -1 #中间层和输出层神经元权值 W_mid_delta = DataFrame(0,index=['input1','input2','theata'],columns=['mid1','mid2','mid3','mid4']) W_out_delta = DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) #中间层的输出 for i in range(0,4): Out_in.iloc[i] = sigmoid(sum(W_mid.iloc[:,i]*Net_in.iloc[:,0])) #输出层的输出/网络输出 res = sigmoid(sum(Out_in.iloc[:,0]*W_out.iloc[:,0])) #误差 error = abs(res-real) #输出层权值变化量 #yita =学习率 yita =0.85 W_out_delta.iloc[:,0] = yita*res*(1-res)*(real-res)*Out_in.iloc[:,0] W_out_delta.iloc[4,0] = -(yita*res*(1-res)*(real-res)) W_out = W_out + W_out_delta #输出层权值更新 #中间层权值变化量 for i in range(0,4): W_mid_delta.iloc[:,i] = yita*Out_in.iloc[i,0]*(1-Out_in.iloc[i,0])*W_out.iloc[i,0]*res*(1-res)*(real-res)*Net_in.iloc[:,0] W_mid_delta.iloc[2,i] = -(yita*Out_in.iloc[i,0]*(1-Out_in.iloc[i,0])*W_out.iloc[i,0]*res*(1-res)*(real-res)) W_mid = W_mid + W_mid_delta #中间层权值更新 return W_out,W_mid,res,error def reault(data,W_out, W_mid): Net_in = DataFrame(data,index=['input1','input2','theata'],columns=['a']) Out_in = DataFrame(0,index=['input1','input2','input3','input4','theata'],columns=['a']) Out_in.loc['theata'] = -1 #中间层的输出 for i in range(0,4): Out_in.iloc[i] = sigmoid(sum(W_mid.iloc[:,i]*Net_in.iloc[:,0])) #输出层的输出/网络输出 res = sigmoid(sum(Out_in.iloc[:,0]*W_out.iloc[:,0])) return res for i in range(0,9): W_out,W_mid,res,error = train(W_out,W_mid,x[0:,i],y[i]) res1 = reault([0.38 ,0.49,-1 ], W_out, W_mid) res2 = reault([0.29 ,0.47 ,-3], W_out, W_mid) print(res1,res2)