1. 安装python 3.7
sudo apt install python3.7 sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.7 2 %python3 指向 python 3.7 sudo update-alternatives --config python3 % if multiple python3 exists, enter the default number such as 2 in this case %install the pip3 sudo apt update curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py sudo apt install python3-distutils sudo python3.7 get-pip.py sudo ln -s /usr/local/bin/pip3.7 /usr/bin/pip3 %install tensorflow-gpu 2.6.0 keras 2.6.0 pip3 install tensorflow-gpu==2.6.0 pip3 install keras==2.6.0
2. 安装cuda
nvidia-smi % to find the version of cuda supported wget https://developer.download.nvidia.com/compute/cuda/11.2.1/local_installers/cuda_11.2.1_460.32.03_linux.run %cuda11.2 is chosen sudo apt install build-essential % to run the file, gcc, g++ should be installed sudo sh cuda_11.2.1_460.32.03_linux.run % install cuda, remember not to install driver in the options %edit the environment sudo vim ~/.bashrc export PATH=/usr/local/cuda-11.2/bin:/usr/local/cuda-11.2/nsight-compute-2021.3.4${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64\ ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} source ~/.bashrc cd usr/local/cuda-11.2/samples/1_Utilities/deviceQuery sudo make ./deviceQuery nvcc -V %to show the version of cuda
3 安装cudnn
wget https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.1.0.77/11.2_20210127/cudnn-11.2-linux-x64-v8.1.0.77.tgz tar -zxf cudnn-11.2-linux-x64-v8.1.0.77.tgz cd cuda sudo cp cuda/include/cudnn.h /usr/local/cuda-11.2/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.2/lib64 sudo chmod a+r /usr/local/cuda-11.2/include/cudnn.h sudo chmod a+r /usr/local/cuda-11.2/lib64/libcudnn*
4. 测试
import tensorflow print(tf.test.is_gpu_available()) %if True is printed, gpu is available