前言
索引的相信大家都听说过,但是真正会用的又有几人?平时工作中写SQL真的会考虑到这条SQL如何能够用上索引,如何能够提升执行效率?
此篇文章详细的讲述了索引优化的几个原则,只要在工作中能够随时应用到,相信你写出的SQL一定是效率最高,最牛逼的。
文章的脑图如下:
索引优化规则
1、like语句的前导模糊查询不能使用索引
select * from doc where title like '%XX'; --不能使用索引 select * from doc where title like 'XX%'; --非前导模糊查询,可以使用索引
因为页面搜索严禁左模糊或者全模糊,如果需要可以使用搜索引擎来解决。
2、union、in、or 都能够命中索引,建议使用 in
union能够命中索引,并且MySQL 耗费的 CPU 最少。
select * from doc where status=1 union all select * from doc where status=2;
in能够命中索引,查询优化耗费的 CPU 比 union all 多,但可以忽略不计,一般情况下建议使用 in。
select * from doc where status in (1, 2);
or 新版的 MySQL 能够命中索引,查询优化耗费的 CPU 比 in多,不建议频繁用or。
select * from doc where status = 1 or status = 2
补充:有些地方说在where条件中使用or,索引会失效,造成全表扫描,这是个误区:
3、负向条件查询不能使用索引
select * from doc where status != 1 and status != 2;
可以优化为 in 查询:
select * from doc where status in (0,3,4);
4、联合索引最左前缀原则
select uid, login_time from user where login_name=? andpasswd=?
select uid, login_time from user where passwd=? andlogin_name=?
假如index(a,b,c), where a=3 and b like 'abc%' and c=4,a能用,b能用,c不能用。
5、不能使用索引中范围条件右边的列(范围列可以用到索引),范围列之后列的索引全失效
select * from employees.titles where emp_no < 10010' and title='Senior Engineer'and from_date between '1986-01-01' and '1986-12-31'
6、不要在索引列上面做任何操作(计算、函数),否则会导致索引失效而转向全表扫描
例如下面的 SQL 语句,即使 date 上建立了索引,也会全表扫描:
select * from doc where YEAR(create_time) <= '2016';
可优化为值计算,如下:
select * from doc where create_time <= '2016-01-01';
比如下面的 SQL 语句:
select * from order where date < = CURDATE();
可以优化为:
select * from order where date < = '2018-01-2412:00:00';
7、强制类型转换会全表扫描
字符串类型不加单引号会导致索引失效,因为mysql会自己做类型转换,相当于在索引列上进行了操作。
如果 phone 字段是 varchar 类型,则下面的 SQL 不能命中索引。
select * from user where phone=13800001234
可以优化为:
select * from user where phone='13800001234';
8、更新十分频繁、数据区分度不高的列不宜建立索引
9、利用覆盖索引来进行查询操作,避免回表,减少select * 的使用
Select uid, login_time from user where login_name=? and passwd=?
10、索引不会包含有NULL值的列
只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时,尽量使用not null 约束以及默认值。
11、is null, is not null无法使用索引
12、如果有order by、group by的场景,请注意利用索引的有序性
order by 最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现file_sort 的情况,影响查询性能。
如果索引中有范围查找,那么索引有序性无法利用,如 WHERE a>10 ORDER BY b;,索引(a,b)无法排序。
13、使用短索引(前缀索引)
14、利用延迟关联或者子查询优化超多分页场景
MySQL 并不是跳过 offset 行,而是取 offset+N 行,然后返回放弃前 offset 行,返回 N 行,那当 offset 特别大的时候,效率就非常的低下,要么控制返回的总页数,要么对超过特定阈值的页数进行 SQL 改写。
示例如下,先快速定位需要获取的id段,然后再关联:
selecta.* from 表1 a,(select id from 表1 where 条件 limit100000,20 ) b where a.id=b.id;
15、如果明确知道只有一条结果返回,limit 1 能够提高效率
select * from user where login_name=?;
select * from user where login_name=? limit 1 .
自己明确知道只有一条结果,但数据库并不知道,明确告诉它,让它主动停止游标移动。
16、超过三个表最好不要 join
17、单表索引建议控制在5个以内
18、SQL 性能优化 explain 中的 type:至少要达到 range 级别,要求是 ref 级别,如果可以是 consts 最好
19、业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引
不要以为唯一索引影响了 insert 速度,这个速度损耗可以忽略,但提高查找速度是明显的。另外,即使在应用层做了非常完善的校验控制,只要没有唯一索引,根据墨菲定律,必然有脏数据产生。
20.创建索引时避免以下错误观念
索引越多越好,认为需要一个查询就建一个索引。
宁缺勿滥,认为索引会消耗空间、严重拖慢更新和新增速度。
抵制惟一索引,认为业务的惟一性一律需要在应用层通过“先查后插”方式解决。
过早优化,在不了解系统的情况下就开始优化。
索引选择性与前缀索引
Index Selectivity = Cardinality / #T
SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles; +-------------+ | Selectivity | +-------------+ | 0.0000 | +-------------+
EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido'; +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ | 1 | SIMPLE | employees | ALL | NULL | NULL | NULL | NULL | 300024 | Using where | +----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.0042 | +-------------+ SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.9313 | +-------------+
SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.7879 | +-------------+
SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees; +-------------+ | Selectivity | +-------------+ | 0.9007 | +-------------+
ALTER TABLE employees.employees ADD INDEX `first_name_last_name4` (first_name, last_name(4));
SHOW PROFILES; +----------+------------+---------------------------------------------------------------------------------+ | Query_ID | Duration | Query | +----------+------------+---------------------------------------------------------------------------------+ | 87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' | | 90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' | +----------+------------+---------------------------------------------------------------------------------+