Java教程

MLE极大似然估计与MAP最大后验概率估计的介绍

本文主要是介绍MLE极大似然估计与MAP最大后验概率估计的介绍,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

这篇文章还讲得比较清楚:

https://blog.csdn.net/u011508640/article/details/72815981

《详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解》

 

MLE:Maximum Likelihood Estimation,极大似然估计

MAP:Maximum A Posteriori Estimation,最大后验概率估计

 

最大似然估计和最大后验概率估计的区别
相信读完上文,MLE和MAP的区别应该是很清楚的了。MAP增加了作为因子的先验概率P ( θ ) 。或者,也可以反过来,认为MLE是把先验概率P ( θ ) 认为等于1,即认为θ 是均匀分布。

 

专门讲MLE的文章可以看这里:

https://zhuanlan.zhihu.com/p/36824006

《极大似然估计 —— Maximum Likelihood Estimation》

 

更详细的可以看这篇文章:

https://zhuanlan.zhihu.com/p/26614750

《一文搞懂极大似然估计》

里面给出最前面那篇文章的链接。

 

极大似然估计的核心关键就是对于一些情况,样本太多,无法得出分布的参数值,可以采样小样本后,利用极大似然估计获取假设中分布的参数值。

 

这篇关于MLE极大似然估计与MAP最大后验概率估计的介绍的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!