Java教程

数据结构算法设计题

本文主要是介绍数据结构算法设计题,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

线性表

1.已知长度为n的线性表采用顺序存储结构。写一个算法,删除线性表中所有值为x的元素。

方法一:用k记录顺序表L中等于x的元素个数,边扫描L边统计k, 并将不等于x的元素前移k个位置,最后修改L的长度。

void del_x_1(SqList &l, ElemType x)
{
    int k = 0, i = 0;
    while (i < L.length)
    {
        if (L.data[i] == x)
        {
            k++;
        }
        else
        {
            L.data[i - k] = L.data[i];
        }
        i++;
    }
    L.length = L.length - k;
}

方法二:用k记录顺序表L中不等于x的元素个数(即需要保存的元素个数), 边扫描L边统计k,并将不等于x的元素向前移动k个位置,最后修改L的长度。

void del_x_2(SqList &l, ElemType x)
{
    int k=0;
    for(i=0;i<L.length;i++)
    {
        if(L.data[i]!=x)
        {
            L.data[k]=L.data[i];
            k++;
        }
    }
    L.length=k;
}

2.设计一个高效算法,将顺序表L的所有元素逆置。

算法思想:扫描顺序表L的前半部分元素,对于元素L.datai, 将其与后半部分的对应元素L.data[L.length-i-1]进行交换。

void Reverse(SqList &L)
{
    ElemType temp;
    for (i = 0; i < L.length / 2; i++)
    {
        temp = L.data[i];
        L.data[i] = L.data[L.length - i - 1];
        L.data[L.length - i - 1] = temp;
    }
}

3.统计出单链表 HL中结点的值等于给定值X的结点数。

int CountX(LNode *HL, ElemType x)
{
    int i = 0;
    LNode *p = HL; // i为计数器
    while (p != NULL)
    {
        if (P->data == x)
        {
            i++;
        }
        p = p->next;
    } // while,出循环时 i中的值即为 x结点个数
    return i;
} // CountX

4.设有两个集合 A和集合 B,要求设计生成集合 C=A∩B的算法,其中集合 A、B和 C用链式存储结构表示 。

typedef struct node
{
    int data;
    struct node *next;
} lklist;

void intersection(lklist *ha, lklist *hb, lklist *&hc)
{
    lklist *p, *q, *t;
    for (p = ha, hc = 0; p != 0; p = p->next)
    {
        for (q = hb; q != 0; q = q->next)
        {
            if (q->data == p->data)
            {
                break;
            }
        }
        if (q != 0)
        {
            t = (lklist *)malloc(sizeof(lklist));
            t->data = p->data;
            t->next = hc;
            hc = t;
        }
    }
}

5.设计在单链表中删除值相同的多余结点的算法

typedef int datatype;
typedef struct node
{
    datatype data;
    struct node *next;
} lklist;

void delredundant(lklist *&head)
{
    lklist *p, *q, *s;
    for (p = head; p != 0; p = p->next)
    {
        for (q = p->next, s = q; q != 0;)
        {
            if (q->data == p->data)
            {
                s->next = q->next;
                free(q);
                q = s->next;
            }
            else
            {
                s = q, q = q->next;
            }
        }
    }
}

6.设单链表中有仅三类字符的数据元素(大写字母、数字和其它字符),要求利用原单链表中结点空间设计出三个单链表的算法,使每个单链表只包含同类字符。

typedef char datatype;
typedef struct node
{
    datatype data;
    struct node *next;
} lklist;

void split(lklist *head, lklist *&ha, lklist *&hb, lklist *&hc)
{
    lklist *p;
    ha = 0, hb = 0, hc = 0;
    for (p = head; p != 0; p = head)
    {
        head = p->next;
        p->next = 0;
        if (p->data >= 'A' && p->data <= 'Z')
        {
            p->next = ha;
            ha = p;
        }
        else if (p->data >= '0' && p->data <= '9')
        {
            p->next = hb;
            hb = p;
        }
        else
        {
            p->next = hc;
            hc = p;
        }
    }
}

7.设计两个有序单链表的合并排序算法。

void mergelklist(lklist *ha, lklist *hb, lklist *&hc)
{
    lklist *s = hc = 0;
    while (ha != 0 && hb != 0)
        if (ha->data < hb->data)
        {
            if (s == 0)
            {
                hc = s = ha;
            }
            else
            {
                s->next = ha;
                s = ha;
            }
            ha = ha->next;
        }
        else
        {
            if (s == 0)
            {
                hc = s = hb;
            }
            else
            {
                s->next = hb;
                s = hb;
            }
            hb = hb->next;
        }
    if (ha == 0)
    {
        s->next = hb;
    }
    else
    {
        s->next = ha;
    }
}

8.设计判断单链表中元素是否是递增的算法。

int isriselk(lklist *head)
{
    if (head == 0 || head->next == 0)
    {
        return (1);
    }
    else
    {
        for (q = head, p = head->next; p != 0; q = p, p = p->next)
        {
            if (q->data > p->data)
            {
                return (0);
            }
        }
    }
    return (1);
}


9.设计在顺序存储结构上实现求子串算法。

void substring(chars[], longstart, longcount, chart[])
{
    long i, j, length = strlen(s);
    if (start < 1 || start > length)
    {
        printf("The copy position is wrong");
    }
    else if (start + count - 1 > length)
    {
        printf("Too characters to be copied");
    }
    else
    {
        for (i = start - 1, j = 0; i < start + count - 1; i++, j++)
        {
            t[j] = s[i];
        }
        t[j] = '\0';
    }
}

数组

10.设计将所有奇数移到所有偶数之前的算法

void quickpass(int r[], int s, int t)
{
    int i = s, j = t, x = r[s];
    while (i < j)
    {
        while (i < j && r[j] % 2 == 0)
        {
            j = j - 1;
        }
        if (i < j)
        {
            r[i] = r[j];
            i = i + 1;
        }
        while (i < j && r[i] % 2 == 1)
        {
            i = i + 1;
        }
        if (i < j)
        {
            r[j] = r[i];
            j = j - 1;
        }
    }
    r[i] = x;
}

树和二叉树

11.设计一个求结点 x在二叉树中的双亲结点算法。

typedef struct node
{
    datatype data;
    struct node *lchild, *rchild;
} bitree;
bitree *q[20];
int r = 0, f = 0, flag = 0;

void preorder(bitree *bt, char x)
{
    if (bt != 0 && flag == 0)
        if (bt->data == x)
        {
            flag = 1;
            return;
        }
        else
        {
            r = (r + 1) % 20;
            q[r] = bt;
            preorder(bt->lchild, x);
            preorder(bt->rchild, x);
        }
}

void parent(bitree *bt, char x)
{
    int i;
    preorder(bt, x);
    for (i = f + 1; i <= r; i++)
        if (q[i]->lchild->data == x || q[i]->rchild->data)
        {
            break;
        }
    if (flag == 0)
    {
        printf("not found x\n");
    }
    else if (i <= r)
    {
        printf("%c", bt->data);
    }
    else
    {
        printf("not parent");
    }
}

12.设计在链式存储结构上交换二叉树中所有结点左右子树的算法。

typedef struct node
{
    int data;
    struct node *lchild, *rchild;
} bitree;

void swapbitree(bitree *bt)
{
    bitree *p;
    if (bt == 0)
    {
        return;
    }
    swapbitree(bt->lchild);
    swapbitree(bt->rchild);
    p = bt->lchild;
    bt->lchild = bt->rchild;
    bt->rchild = p;
}

13.在链式存储结构上建立一棵二叉排序树。

#define n 10
typedef struct node
{
    int key;
    struct node *lchild, *rchild;
} bitree;

void bstinsert(bitree *&bt, intkey)
{
    if (bt == 0)
    {
        bt = (bitree *)malloc(sizeof(bitree));
        bt->key = key;
        bt->lchild = bt->rchild = 0;
    }
    else if (bt->key > key)
    {
        bstinsert(bt->lchild, key);
    }
    else
    {
        bstinsert(bt->rchild, key);
    }
}

void createbsttree(bitree *&bt)
{
    int i;
    for (i = 1; i <= n; i++)
    {
        bstinsert(bt, random(100));
    }
}

14.设计判断两个二叉树是否相同的算法。

typedef struct node
{
    datatype data;
    struct node *lchild, *rchild;
} bitree;

int judgebitree(bitree *bt1, bitree *bt2)
{
    if (bt1 == 0 && bt2 == 0)
    {
        return (1);
    }
    else if (bt1 == 0 || bt2 == 0 || bt1->data != bt2->data)
    {
        return (0);
    }
    else
    {
        return (judgebitree(bt1->lchild, bt2->lchild) * judgebitree(bt1->rchild, bt2->rchild));
    }
}

15.设计判断二叉树是否为二叉排序树的算法。

int minnum = -32768, flag = 1;
typedef struct node
{
    int key;
    struct node *lchild, *rchild;
} bitree;

void inorder(bitree *bt)
{
    if (bt != 0)
    {
        inorder(bt->lchild);
        if (minnum > bt->key)
        {
            flag = 0;
        }
        minnum = bt->key;
        inorder(bt->rchild);
    }
}

16.设计一个在链式存储结构上统计二叉树中结点个数的算法。

void countnode(bitree *bt, int &count)
{
    if (bt != 0)
    {
        count++;
        countnode(bt->lchild, count);
        countnode(bt->rchild, count);
    }
}

17.设计计算二叉树中所有结点值之和的算法。

void sum(bitree *bt, int &s)
{
    if (bt != 0)
    {
        s = s + bt->data;
        sum(bt->lchild, s);
        sum(bt->rchild, s);
    }
}

18.设计一个算法将无向图的邻接矩阵转为对应邻接表的算法。

typedef struct
{
    int vertex[m];
    int edge[m][m];
} gadjmatrix;

typedef struct node1
{
    int info;
    int adjvertex;
    struct node1 *nextarc;
} glinklistnode;

typedef struct node2
{
    int vertexinfo;
    glinklistnode *firstarc;
} glinkheadnode;

void adjmatrixtoadjlist(gadjmatrix g1[], glinkheadnode g2[])
{
    int i, j;
    glinklistnode *p;
    for (i = 0; i <= n - 1; i++)
    {
        g2[i].firstarc = 0;
    }
    for (i = 0; i <= n - 1; i++)
    {
        for (j = 0; j <= n - 1; j++)
        {
            if (g1.edge[i][j] == 1)
            {
                p = (glinklistnode *)malloc(sizeof(glinklistnode));
                p->adjvertex = j;
                p->nextarc = g[i].firstarc;
                g[i].firstarc = p;
                p = (glinklistnode *)malloc(sizeof(glinklistnode));
                p->adjvertex = i;
                p->nextarc = g[j].firstarc;
                g[j].firstarc = p;
            }
        }
    }
}

查找

19.设计在顺序有序表中实现二分查找的算法。

struct record
{
    int key;
    int others;
};

int bisearch(struct recordr[], int k)
{
    int low = 0, mid, high = n - 1;
    while (low <= high)
    {
        mid = (low + high) / 2;
        if (r[mid].key == k)
        {
            return (mid + 1);
        }
        else if (r[mid].key > k)
        {
            high = mid - 1;
        }
        else
        {
            low = mid + 1;
        }
    }
    return (0);
}

排序

20.设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在 O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于 Ki,右半部分的每个关键字均大于等于 Ki。

void quickpass(int r[], int s, int t)
{
    int i = s, j = t, x = r[s];
    while (i < j)
    {
        while (i < j && r[j] > x)
        {
            j = j - 1;
        }
        if (i < j)
        {
            r[i] = r[j];
            i = i + 1;
        }
        while (i < j && r[i] < x)
        {
            i = i + 1;
        }
        if (i < j)
        {
            r[j] = r[i];
            j = j - 1;
        }
    }
    r[i] = x;
}

21.在链式存储结构上设计直接插入排序算法

void straightinsertsort(lklist *&head)
{
    lklist *s, *p, *q;
    int t;
    if (head == 0 || head->next == 0)
    {
        return;
    }
    else
    {
        for (q = head, p = head->next; p != 0; p = q->next)
        {
            for (s = head; s != q->next; s = s->next)
            {
                if (s->data > p->data)
                {
                    break;
                }
            }
            if (s == q->next)
            {
                q = p;
            }
            else
            {
                q->next = p->next;
                p->next = s->next;
                s->next = p;
                t = p->data;
                p->data = s->data;
                s->data = t;
            }
        }
    }
}

22.设计在链式结构上实现简单选择排序算法。

void simpleselectsorlklist(lklist *&head)
{
    lklist *p, *q, *s;
    int min, t;
    if (head == 0 || head->next == 0)
    {
        return;
    }
    for (q = head; q != 0; q = q->next)
    {
        min = q->data;
        s = q;
        for (p = q->next; p != 0; p = p->next)
        {
            if (min > p->data)
            {
                min = p->data;
                s = p;
            }
        }
        if (s != q)
        {
            t = s->data;
            s->data = q->data;
            q->data = t;
        }
    }
}

23.设计求结点在二叉排序树中层次的算法。

int lev = 0;
typedef struct node
{
    int key;
    struct node *lchild, *rchild;
} bitree;

void level(bitree *bt, int x)
{
    if (bt != 0)
    {
        lev++;
        if (bt->key == x)
        {
            return;
        }
        else if (bt->key > x)
        {
            level(bt->lchild, x);
        }
        else
        {
            level(bt->rchild, x);
        }
    }
}

24.设计在链式存储结构上合并排序的算法。

void mergelklist(lklist *ha, lklist *hb, lklist *&hc)
{
    lklist *s = hc = 0;
    while (ha != 0 && hb != 0)
    {
        if (ha->data < hb->data)
        {
            if (s == 0)
            {
                hc = s = ha;
            }
            else
            {
                s->next = ha;
                s = ha;
            }
            ha = ha->next;
        }
        else
        {
            if (s == 0)
            {
                hc = s = hb;
            }
            else
            {
                s->next = hb;
                s = hb;
            }
            hb = hb->next;
        }
    }
    if (ha == 0)
    {
        s->next = hb;
    }
    else
    {
        s->next = ha;
    }
}

25.设计在二叉排序树上查找结点 X的算法。

bitree *bstsearch1(bitree *t, int key)
{
    bitree *p = t;
    while (p != 0)
        if (p->key == key)
        {
            return (p);
        }
        else if (p->key > key)
        {
            p = p->lchild;
        }
        else
        {
            p = p->rchild;
        }
    return (0);
}

26.设关键字序列(k1,k2,…,kn-1)是堆,设计算法将关键字序列(k1,k2,…,kn-1,x)调整为堆。

void adjustheap(int r[], int n)
{
    int j = n, i = j / 2, temp = r[j - 1];
    while (i >= 1)
    {
        if (temp >= r[i - 1])
        {
            break;
        }
        else
        {
            r[j - 1] = r[i - 1];
            j = i;
            i = i / 2;
        }
    }
    r[j - 1] = temp;
}
这篇关于数据结构算法设计题的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!