论文名称:A non-local algorithm for image denoising
论文下载:https://www.researchgate.net/profile/Bartomeu-Coll/publication/4156453_A_non-local_algorithm_for_image_denoising/links/0f317534c2cac194e4000000/A-non-local-algorithm-for-image-denoising.pdfhttps://www.researchgate.net/profile/Bartomeu-Coll/publication/4156453_A_non-local_algorithm_for_image_denoising/links/0f317534c2cac194e4000000/A-non-local-algorithm-for-image-denoising.pdf
05年的论文,比较老的算法,但也比较有代表性。 论文比较好理解,就是认为图像内部有很多相似的块,只要进行块间相似性匹配,如果差异比较小,权重就比较大,差异比较大,权重就比较小,根据相似性进行加权平均,得到滤波后的结果。算法对均值为0的高斯噪声效果较好。由于好理解,就直接贴论文核心部分。
用欧式距离进行块间匹配,差异越小,权重越大,由于图像是有噪声的,所以即使没有噪声的两个块是完全一样的,由于噪声的存在,导致计算出的欧式距离不为0,其期望大概为2*σ2。所以最后在算权重时,需要多减去2*σ2。
参该网站上提供的代码,用Python重写了,运行速度很慢,用分辨率低的图做测试比较好。IPOL Journal · Non-Local Means Denoisinghttps://www.ipol.im/pub/art/2011/bcm_nlm/
import cv2 import os import numpy as np def AddGaussNoise(img, sigma, mean=0): # 大概率abs(noise) < 3 * sigma noise = np.random.normal(mean, sigma, img.shape) img = img.astype(np.float) img = img + noise img = np.clip(img, 0, 255) img = img.astype(np.uint8) return img def AddGaussNoiseGray(img, sigma, mean=0): lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab) noise = np.random.normal(mean, sigma, lab[:, :, 0].shape) lab = lab.astype(np.float) lab[:, :, 0] = lab[:, :, 0] + noise lab[:, :, 0] = np.clip(lab[:, :, 0], 0, 255) lab = lab.astype(np.uint8) img = cv2.cvtColor(lab, cv2.COLOR_Lab2BGR) return img def GetMeandiff(patch1, patch2): # patch1 = patch1.astype(float) # patch2 = patch2.astype(float) diff = patch1 - patch2 diff = diff.flatten() diff = diff * diff diffmean = diff.mean() return diffmean def CalculateWeightLut(sigma, h): weightLut = np.zeros((256 * 256), np.float) sigma2 = sigma * sigma h2 = h * h for i in range(256 * 256): tmp = -max(i - 2 * sigma2, 0.0) / h2 weightLut[i] = np.exp(tmp) if weightLut[i] < 0.0001: break return weightLut def NonLocalMeansColor(image, sigma, h, templateWindowSize, searchWindow): height, width = image.shape[0], image.shape[1] patchWin = templateWindowSize // 2 searchWin = searchWindow // 2 # Padding the image padLength = patchWin + searchWin img = cv2.copyMakeBorder(image, padLength, padLength, padLength, padLength, cv2.BORDER_CONSTANT, value=255) img = img.astype(np.float) tmpSum = np.zeros((height + 2 * padLength, width + 2 * padLength, 3), np.float) count = np.zeros((height + 2 * padLength, width + 2 * padLength, 3), np.int) weightLut = CalculateWeightLut(sigma, h) for j in range(height): for i in range(width): padj = j + padLength padi = i + padLength centerPatch = img[padj - patchWin: padj + patchWin + 1, padi - patchWin: padi + patchWin + 1, :] # print(centerPatch.shape) sumWeight = 0 templatePixel = np.zeros((templateWindowSize, templateWindowSize, 3), np.float) for r in range(padj - searchWin, padj + searchWin): for c in range(padi - searchWin, padi + searchWin): otherPatch = img[r - patchWin: r + patchWin + 1, c - patchWin: c + patchWin + 1, :] diff = GetMeandiff(centerPatch, otherPatch) diff = (int)(diff) curWeight = weightLut[diff] sumWeight += curWeight templatePixel += otherPatch * curWeight if sumWeight > 0.0001: tmpSum[padj - patchWin: padj + patchWin + 1, padi - patchWin: padi + patchWin + 1, :] += templatePixel / sumWeight count[padj - patchWin: padj + patchWin + 1, padi - patchWin: padi + patchWin + 1] += 1 outImg = tmpSum[padLength:padLength + height, padLength:padLength + width, :] outCnt = count[padLength:padLength + height, padLength:padLength + width, :] mask = outCnt > 0 outImg = outImg * mask + image * (1 - mask) outCnt = outCnt * mask + 1 - mask outImg = outImg / outCnt outImg = np.clip(outImg, 0, 255) outImg = outImg.astype(np.uint8) return outImg if __name__ == '__main__': img = cv2.imread('test3.jpg', 1) # img = cv2.resize(img, (600, 750//2), interpolation=cv2.INTER_AREA) print(img.shape) noiseImg = AddGaussNoise(img, 20, 0) denoise = NonLocalMeansColor(noiseImg, 20, 8, 5, 15) cv2.imwrite('test_gauss_noise_color.jpg', noiseImg) cv2.imwrite('test_gauss_denoise_color.jpg', denoise) denoisecv = cv2.fastNlMeansDenoisingColored(noiseImg, None, 10, 10, 5, 15) cv2.imwrite('test_gauss_noise_colorcv.jpg', denoisecv)
代码里写的只能处理三通道的彩色图,处理灰度图的话,需要仿造写个函数。运行效果如下,sigma为20的高斯噪声。
噪声图像,sigma=20
去噪效果
fastNlMeansDenoisingColored运行的结果
可以看到,对高斯噪声,已知sigma的情况下,去噪效果还是比较好的,OpenCV自带的部分区域噪声没有去干净,可能和参数有关,他们用的是快速算法,参数也不一样,下次再研究一下。