Python教程

一、Opencv-Python-图像入门

本文主要是介绍一、Opencv-Python-图像入门,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

一、图像

1. 图像简介

1.1 图像

图像是人对视觉感知的物质再现。

图像可以由光学设备获取,如照相机、照相机、镜子、望远镜及显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质介质、胶片等等对光信号敏感的介质上。随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。

因而,有些情况下“图像”一词实际上是指数字图像。

  • 图像分为静态影像,如图片、照片等,和动态影像,如视频等两种。
  • 图像是一种视觉符号。透过专业设计的图像,可以发展成人与人沟通的视觉语言,也可以是了解族群文化与历史源流的史料。世界美术史中大量的平面绘画、立体雕塑与建筑,也可视为人类由古自今文明发展的图像文化资产。

1.2 数字图像和模拟图像

模拟图像

模拟图像又称连续图像,它通过某种物理量(如光、电等)的强弱变化来记录图像亮度信息,所以是连续变换的。模拟信号的特点是容易受干扰,如今已经基本全面被数字图像替代。

数字图像

在第一次世界大战后,1921年美国科学家发明了Bartlane System,并从伦敦传到纽约传输了第一幅数字图像,其亮度用离散数值表示,将图片编码成5个灰度级,如下图所示,通过海底电缆进行传输。在发送端图片被编码并使用打孔带记录,通过系统传输后在接收方使用特殊的打印机恢复成图像。

image

image

2. 数字图像表示

2.1 位数

计算机采用0/1编码的系统,数字图像也是利用0/1来记录信息,我们平常接触的图像都是8位数图像,包含0~255灰度,其中0,代表最黑,1,表示最白。
image

2.2 数字图像分类

二值图像

一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。
image

灰度图

每个像素只有一个采样颜色的图像,这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑色与白色两种颜色;但是,灰度图像在黑色与白色之间还有许多级的颜色深度。灰度图像经常是在单个电磁波频谱如可见光内测量每个像素的亮度得到的,用于显示的灰度图像通常用每个采样像素8位的非线性尺度来保存,这样可以有256级灰度(如果用16位,则有65536级)。

image

彩色图

每个像素通常是由红(R)、绿(G)、蓝(B)三个分量来表示的,分量介于(0,255)。RGB图像与索引图像一样都可以用来表示彩色图像。与索引图像一样,它分别用红(R)、绿(G)、蓝(B)三原色的组合来表示每个像素的颜色。但与索引图像不同的是,RGB图像每一个像素的颜色值(由RGB三原色表示)直接存放在图像矩阵中,由于每一像素的颜色需由R、G、B三个分量来表示,M、N分别表示图像的行列数,三个M x N的二维矩阵分别表示各个像素的R、G、B三个颜色分量。RGB图像的数据类型一般为8位无符号整形,通常用于表示和存放真彩色图像。

image

这篇关于一、Opencv-Python-图像入门的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!