设 \(f(x),f_1(x),f_2(x),\cdots,f_k(x),\cdots\)是在 \(E\) 上 \(a.e.\) 有限的可测函数,且 \(mE<\infty\).
若\(f_k(x)\rightarrow f(x),a.e. x\in E\),
则存在\(E\)的可测子集\(E_\delta:mE_\delta\le \delta\),使得\(\{f_k(x)\}\)在\(E \backslash E_0\)上一致收敛于\(f(x)\).
\(\delta\neq0:\) 如果为0则变成了点集,但显然逐点收敛不可能去掉一个点集就变成一致收敛
\(mE<\infty:\) 常用反例\(f_n(x)=\begin{cases}1&x\in(0,n)\\0&x\in[n,+\infty)\end{cases}\)
f(x)几乎处处有限:一般情况下,如果有一个邻域无限就不会收敛到一个实值函数。但更多时候这个是为了服务 测度收敛\(\Rightarrow\) a.e.处处收敛的。
*引理:
\[E[f_n(x)\nrightarrow f(x)]=\bigcap\limits_{N=1}^{\infty} \bigcup\limits_{n=N}^{\infty}E[|f_n(x)-f(x)|\ge \varepsilon] = \bigcap\limits_{N=1}^{\infty} \bigcup\limits_{n=N}^{\infty}E_n(\varepsilon) \]于是有:
\[\begin{aligned} &m\left(\bigcap\limits_{N=1}^{\infty} \bigcup\limits_{n=N}^{\infty}E_n(\varepsilon)\right) = \lim\limits_{N\rightarrow \infty} m\left(\bigcup\limits_{n=N}^{\infty} E_n(\varepsilon)\right) & (2) \end{aligned} \]在Egoroff定理中,满足了\((2)\)中测度为\(0\),于是任取一列\(\{\varepsilon_i\}\)与\(\{\mu_i\}\),都存在\(\{j_i\}\),使得\(m\left(\bigcup\limits_{k=j_i}^{\infty}E_k(\varepsilon_i)\right)<\mu_i\)
不妨取\(\varepsilon_i=\frac{1}{i},\mu_i=\frac{\delta}{2^i}\),令\(E_\delta = \bigcup\limits_{i=1}^{\infty}\bigcup\limits_{k=j_i}^{\infty}E_k(\frac{1}{i})\),即有
\[m(E_\delta)\le \sum\limits_{i=1}^{\infty}m\left(E_k\left(\frac{1}{i}\right)\right) \le \sum\limits_{i=1}^{\infty}\frac{\delta}{2^i}=\delta \]这种情况下,显然有\(E\verb|\|E_\delta=\bigcap\limits_{i=1}^{\infty}\bigcap\limits_{k=j_i}^{\infty}E[|f_k(x)-f(x)|<\frac{1}{i}]\),立即知一致收敛。
设\(f(x),f_n(x)\)均为\(E\)上的可测函数,若\(\forall \delta>0,\exists E_\delta \subset E, s.t.m(E\backslash E_\delta)<\delta\),且\(f_n(x)\)在\(E_\delta\)上几乎处处一致收敛于\(f(x)\),则\(\lim\limits_{n\rightarrow \infty}f_n(x)=f(x)\).
若\(\{f_n(x)\}\)是\(E\)上几乎处处有限的可测函数列,且\(m(E)<\infty\),若\(\{f_k(x)\}\)几乎处处收敛于几乎处处有限的函数\(f(x)\),则\(f_k(x)\)在\(E\)上收依测度收敛于\(f(x)\).
若\(\{f_k(x)\}\)在\(E\)上依测度收敛于\(f(x)\),则存在子列\(f_{k_i}(x)\),使得:
\[\lim\limits_{i\rightarrow \infty} f_{k_i}(x)=g(x) \]证\(\forall \varepsilon>0,\exists k,s.t. l,r>k, \lim\limits_{k\rightarrow \infty\\j\rightarrow \infty}m(|f_l(x)-f_r(x)|>\varepsilon)=0\)
取一列\(\{k_i\},k_i<k_{i+1}\),令\(E_i=E[|f_k(x)-f_{k+1}(x)|\ge \frac{1}{2^i}]\),则可以有\(m(E_i)<2^{-i}\)
取\(\{E_i\}\)的上限集\(S=\bigcap\limits_{j=1}^{\infty} \bigcup\limits_{i=j}^{\infty}E_i\),则\(m(S)=0\).
且若\(x\notin S\),则\(\exists j,s.t. x\in E\backslash \bigcup\limits_{i=j}^{\infty}E_j\)
于是,当\(i\ge j\)时,有\(|f_{k_{i+1}}-f_{k_{i}}|\le \frac{1}{2^{l-1}}\),即该级数绝对收敛。设原级数极限函数为\(g(x)\).
此时\(f_{k_i}(x)\)依测度收敛于\(g(x)\),又由于其依测度收敛于\(f(x)\),从而知\(f(x)=g(x)\).
该定理使得依测度收敛继承一致收敛的结论。
(反证法)使得\(f_{k_{i}}(x)\nrightarrow f(x)\)与\(f_{k_{i_{j}}}(x) \rightarrow f(x)\)矛盾。
\(f_n(x)\stackrel{M}{\longrightarrow} f(x),g_n(x)\stackrel{M}{\longrightarrow} g(x),\),求证\(f_n(x)g_n(x)\stackrel{M}{\longrightarrow} f(x)g(x)\)
任取一个\(\delta>0\),找到一组\(\{E_k\}\)的并,使得\(m(\bigcup\limits_{i=1}^{\infty}E_{k_{i}})<\delta\)
去掉这组零测集后,就可以保证一致收敛。
(1) 设 \(\{f_n(x)\}\) 为 \(E\) 上实值可测函数列,且 \(mE<+\infty\),证明\(\lim\limits_{n\rightarrow \infty} f_n(x)=0, a.e. x\in E\) 的充要条件为 \(\sup\limits_{k\ge n}|f_k(x)|\stackrel{M}{\longrightarrow}0\)
注意到 \(\varlimsup = \limsup |f_k(x)|\),则必要性得证;
注意到\(g_n(x)=\varlimsup \limits_{k\ge n}|f_k(x)|\)是单减列,且存在子列a.e.收敛于\(0\),进而绝对收敛无穷和与其上极限值和相等为0,原级数也为0。
(2) 设\(mE<\infty\),\(f(x)\)及\(f_n(x)\)为\(E\)上a.e.有限的可测函数则\(f_n(x)\stackrel{M}{\longrightarrow} f(x)\)的充要条件为\(\varliminf \limits_{n\rightarrow \infty\\ \alpha>0}\alpha + mE[|f_n(x)-f(x)|\ge\alpha] = 0\)
本题要说明\(\alpha+mE\)可以无限逼近0。而我们想到\(mE\rightarrow 0\),于是只要设法让\(\alpha = mE = \frac{\varepsilon}{2}\)即可。
又由于 \(|f_n-f|\) 的差异实际上只由\(n\)决定,所以很容易找到这样一个\(N\),使得\(\alpha\) 和 \(mE\) 满足上述条件。从而必要性得证。
充分性:
\(inf\):\(\forall \varepsilon > 0, \exists \alpha_0, s.t. 0<H(\alpha_0)<\varepsilon\).进而有:
\[\begin{cases} \alpha_1 + mE_1 < \varepsilon_1 \\ \alpha_2 + mE_2 < \varepsilon_2 \\ \vdots \\ \alpha_n + mE_n < \varepsilon_n \end{cases} \]于是,\(mE_n<\varepsilon_n-\alpha_n<\varepsilon_n\)
令 \(n\rightarrow \infty\),则有了:\(mE[|f_n-f|\ge \alpha]=0\),即依测度收敛。