Java教程

创新实训-生物大分子序列分析平台05

本文主要是介绍创新实训-生物大分子序列分析平台05,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

创新实训-生物大分子序列分析平台05

  • 2021SC@SDUSC
  • 代码分析

2021SC@SDUSC

代码分析

Hugging Face pytorch版本-bert模型代码
1.BertEmbeddings类

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings."""

BertEmbedding由word embedding,position embedding和token_type embedding直接相加得到。
word embedding,position embedding和token_type embedding分别由input_ids、position_ids和token_type_ids通过nn.Embedding进行词嵌入得到。
在这里插入图片描述
使用层归一化和dropout产生输出

    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
        
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
        if version.parse(torch.__version__) > version.parse("1.6.0"):
            self.register_buffer(
                "token_type_ids",
                torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
                persistent=False,
            )

2.BertEncoder类
encoder由num_hidden_layers(12)个BertLayer组成

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

在for循环中,遍历所有层,hidden_states = layer_outputs[0]获取了每一个layer的输出。最后由配置中的output_hidden_states决定是否输出某一层的hidden_states。

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None

        next_decoder_cache = () if use_cache else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                )

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )

3.BertLayer类
将输入顺序送入BertAttention、BertIntermediate、BertOutput三个模块
cross attention仅当bert作为decoder时使用

    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BertAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            if not self.is_decoder:
                raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
            self.crossattention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)
这篇关于创新实训-生物大分子序列分析平台05的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!