Given an integer array nums, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞.
You must write an algorithm that runs in O(log n) time.
Example 1:
Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,5,6,4]
Output: 5
Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
nums[i] != nums[i + 1] for all valid i.
class Solution { public: int binarySearch(int left,int right,vector<int>& nums){ int mid=(left+right)/2; if(nums[mid]>nums[mid+1]&&nums[mid]>nums[mid-1]){ return mid; } if(nums[mid]<nums[mid+1]){ return binarySearch(mid,right,nums); } else{ return binarySearch(left,mid+1,nums); } } int findPeakElement(vector<int>& nums) { int right=nums.size()-1,left=0; int mid=(right+left)/2; if(nums.size()==1){ return 0; } else if(nums[0]>nums[1]){ return 0; } else if(nums[nums.size()-1]>nums[nums.size()-2]){ return nums.size()-1; } else{ while(!(nums[mid]>nums[mid+1]&&nums[mid]>nums[mid-1])){ if(nums[mid]<nums[mid+1]){ left=mid; } else{ right=mid+1; } mid=(left+right)/2; } return mid; } } };