GMP调度应该是被面试的时候问的频率最高的问题!
我们知道,一切的软件都是跑在操作系统上,真正用来干活 (计算) 的是 CPU。早期的操作系统每个程序就是一个进程,知道一个程序运行完,才能进行下一个进程,就是 “单进程时代”
一切的程序只能串行发生。
Processor,它包含了运行 goroutine 的资源,如果线程想运行 goroutine,必须先获取 P,P 中还包含了可运行的 G 队列。
线程是运行 goroutine 的实体,调度器的功能是把可运行的 goroutine 分配到工作线程(M)上
G
时,G
优先加入到 P 的本地队列,如果队列满了,则会把本地队列中一半的 G 移动到全局队列。Goroutine 调度器和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行。
M 与 P 的数量没有绝对关系,一个 M 阻塞,P 就会去创建或者切换另一个 M,所以,即使 P 的默认数量是 1,也有可能会创建很多个 M 出来。
复用线程:避免频繁的创建、销毁线程,而是对线程的复用。
work stealing 机制
hand off 机制
利用并行:GOMAXPROCS 设置 P 的数量,最多有 GOMAXPROCS 个线程分布在多个 CPU 上同时运行。GOMAXPROCS 也限制了并发的程度,比如 GOMAXPROCS = 核数/2,则最多利用了一半的 CPU 核进行并行。
抢占:在 coroutine 中要等待一个协程主动让出 CPU 才执行下一个协程,在 Go 中,一个 goroutine 最多占用 CPU 10ms,防止其他 goroutine 被饿死,这就是 goroutine 不同于 coroutine 的一个地方。
全局 G 队列:,当 M 执行 work stealing 从其他 P 偷不到 G 时,它可以从全局 G 队列获取 G。
从上图我们可以分析出几个结论:
M0
M0 是启动程序后的编号为 0 的主线程,这个 M 对应的实例会在全局变量 runtime.m0 中,不需要在 heap 上分配,M0 负责执行初始化操作和启动第一个 G, 在之后 M0 就和其他的 M 一样了。
G0
G0 是每次启动一个 M 都会第一个创建的 gourtine,G0 仅用于负责调度的 G,G0 不指向任何可执行的函数,每个 M 都会有一个自己的 G0。在调度或系统调用时会使用 G0 的栈空间,全局变量的 G0 是 M0 的 G0。
package main import "fmt" func main() { fmt.Println("Hello world") }
会经历如上图所示的过程:
调度器的生命周期几乎占满了一个 Go 程序的一生,runtime.main 的 goroutine 执行之前都是为调度器做准备工作,runtime.main 的 goroutine 运行,才是调度器的真正开始,直到 runtime.main 结束而结束。
有 2 种方式可以查看一个程序的 GMP 的数据。
trace 记录了运行时的信息,能提供可视化的 Web 页面。
简单测试代码:main 函数创建 trace,trace 会运行在单独的 goroutine 中,然后 main 打印 "Hello World" 退出
package main import ( "os" "fmt" "runtime/trace" ) func main() { //创建trace文件 f, err := os.Create("trace.out") if err != nil { panic(err) } defer f.Close() //启动trace goroutine err = trace.Start(f) if err != nil { panic(err) } defer trace.Stop() //main fmt.Println("Hello World") }
$ go run trace.go Hello World
$ go tool trace trace.out /09/21 22:14:22 Parsing trace... 2021/09/21 22:14:22 Splitting trace... 2021/09/21 22:14:22 Opening browser. Trace viewer is listening on http://127.0.0.1:7925
G信息
点击 Goroutines 那一行可视化的数据条,我们会看到一些详细的信息。
一共有两个G在程序中,一个是特殊的G0,因为每个M必须有的一个初始化的G
M 信息
点击 Threads 那一行可视化的数据条,我们会看到一些详细的信息。
一共有两个 M 在程序中,一个是特殊的 M0,用于初始化使用
P信息
G1 中调用了 main.main,创建了 trace goroutine g19。G1 运行在 P1 上,G19 运行在 P0 上。
这里有两个 P,我们知道,一个 P 必须绑定一个 M 才能调度 G。
来看看上面的 M 信息。
确实 G19 在 P0 上被运行的时候,确实在 Threads 行多了一个 M 的数据
多了一个 M2 应该就是 P0 为了执行 G19 而动态创建的 M2.
代码
package main import ( "fmt" "time" ) func main() { for i := 0; i < 5; i++ { time.Sleep(time.Second) fmt.Println("Hello World") } }
编译
go build trace2.go
通过debug方式运行
GODEBUG=schedtrace=1000 ./trace2 SCHED 0ms: gomaxprocs=2 idleprocs=0 threads=4 spinningthreads=1 idlethreads=1 runqueue=0 [0 0] Hello World SCHED 1003ms: gomaxprocs=2 idleprocs=2 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0] Hello World SCHED 2014ms: gomaxprocs=2 idleprocs=2 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0] Hello World SCHED 3015ms: gomaxprocs=2 idleprocs=2 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0] Hello World SCHED 4023ms: gomaxprocs=2 idleprocs=2 threads=4 spinningthreads=0 idlethreads=2 runqueue=0 [0 0] Hello World