传送门
这题贼简单,结果线段树竟然写错了,奇耻大辱。
由题意得,每一个数的'1'的个数只减不增,那么最多只会改31次,因此对于删除lowbit的操作,可以暴力修改,时间复杂度\(O(nlog^2n)\)。
而对于第二种操作,只是相当于把最高位的'1'往高挪了一位,那么用线段树维护区间最高位的和,以及向左移动多少位的标记。区间修改的时候就将标记+1,并且区间和加上最高位的和,最高位的和再乘以2即可。
#include<bits/stdc++.h> using namespace std; #define enter puts("") #define space putchar(' ') #define Mem(a, x) memset(a, x, sizeof(a)) #define In inline typedef long long ll; const int maxn = 1e5 + 5; const ll mod = 998244353; const int N = 30; In ll read() {ll x; scanf("%lld", &x); return x;} In void write(ll x) {printf("%lld", x);} ll q2[maxn]; In ll ADD(const ll& a, const ll& b) {return a + b < mod ? a + b : a + b - mod;} int n, Q; ll a[maxn]; struct Tree { int l, r; ll sum, rsum, lzy; bool lft; In Tree operator + (const Tree& oth)const { Tree ret; ret.l = l, ret.r = oth.r; ret.sum = ADD(sum, oth.sum); ret.rsum = ADD(rsum, oth.rsum); ret.lzy = 0; ret.lft = lft | oth.lft; return ret; } }t[maxn << 2]; In void build(int L, int R, int now) { t[now].l = L, t[now].r = R; if(L == R) { a[L] = read(); t[now].sum = a[L] % mod, t[now].lzy = 0; t[now].rsum = 0; if(a[L]) t[now].lft = 1; for(int i = N; i >= 0; --i) if((a[L] >> i) & 1) { t[now].rsum = (1 << i) % mod; break; } return; } int mid = (L + R) >> 1; build(L, mid, now << 1), build(mid + 1, R, now << 1 | 1); t[now] = t[now << 1] + t[now << 1 | 1]; } In void Change(int now, int d) { ll tp = q2[d]; t[now].sum = ADD(t[now].sum, t[now].rsum * (tp - 1 + mod) % mod); t[now].rsum = t[now].rsum * tp % mod; t[now].lzy += d; } In void pushdown(int now) { if(t[now].lzy) { Change(now << 1, t[now].lzy), Change(now << 1 | 1, t[now].lzy); t[now].lzy = 0; } } In void update_low(int L, int R, int now) { if(!t[now].lft) return; //整个区间都是0了 if(t[now].l == t[now].r) //我竟然写成L == R,而且整场比赛没看出来 { ll tp = a[L] & (-a[L]); if(tp == a[L]) { t[now].rsum = t[now].sum = 0; t[now].lzy = t[now].lft = 0; } else { t[now].sum = ADD(t[now].sum, mod- tp % mod); a[L] -= tp; } return; } pushdown(now); int mid = (t[now].l + t[now].r) >> 1; if(R <= mid) update_low(L, R, now << 1); else if(L > mid) update_low(L, R, now << 1 | 1); else update_low(L, mid, now << 1), update_low(mid + 1, R, now << 1 | 1); t[now] = t[now << 1] + t[now << 1 | 1]; } In void update_hig(int L, int R, int now) { if(t[now].l == L && t[now].r == R) { Change(now, 1); return; } pushdown(now); int mid = (t[now].l + t[now].r) >> 1; if(R <= mid) update_hig(L, R, now << 1); else if(L > mid) update_hig(L, R, now << 1 | 1); else update_hig(L, mid, now << 1), update_hig(mid + 1, R, now << 1 | 1); t[now] = t[now << 1] + t[now << 1 | 1]; } In ll query(int L, int R, int now) { if(t[now].l == L && t[now].r == R) return t[now].sum; pushdown(now); int mid = (t[now].l + t[now].r) >> 1; if(R <= mid) return query(L, R, now << 1); else if(L > mid) return query(L, R, now << 1 |1); else return ADD(query(L, mid, now << 1), query(mid + 1, R, now << 1 | 1)); } int main() { int T = read(); q2[0] = 1; for(int i = 1; i < maxn; ++i) q2[i] = q2[i - 1] * 2 % mod; while(T--) { n = read(); build(1, n, 1); Q = read(); for(int i = 1; i <= Q; ++i) { int op = read(), L = read(), R = read(); if(L > R) swap(L, R); if(op == 1) write(query(L, R, 1)), enter; else if(op == 2) update_low(L, R, 1); else update_hig(L, R, 1); } } return 0; }