TensorFlow教程

初学者的 TensorFlow 2.0 教程

本文主要是介绍初学者的 TensorFlow 2.0 教程,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

 

Note: 我们的 TensorFlow 社区翻译了这些文档。因为社区翻译是尽力而为, 所以无法保证它们是最准确的,并且反映了最新的 官方英文文档。如果您有改进此翻译的建议, 请提交 pull request 到 tensorflow/docs GitHub 仓库。要志愿地撰写或者审核译文,请加入 docs-zh-cn@tensorflow.org Google Group。

这是一个 Google Colaboratory 笔记本文件。 Python 程序可以直接在浏览器中运行,这是学习 Tensorflow 的绝佳方式。想要学习该教程,请点击此页面顶部的按钮,在 Google Colab 中运行笔记本。

  1. 在 Colab 中, 连接到 Python 运行环境: 在菜单条的右上方, 选择 CONNECT
  2. 运行所有的代码块: 选择 Runtime > Run all

下载并安装 TensorFlow 2.0 测试版包。将 TensorFlow 载入你的程序:

# 安装 TensorFlow

import tensorflow as tf

载入并准备好 MNIST 数据集。将样本从整数转换为浮点数:

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

将模型的各层堆叠起来,以搭建 tf.keras.Sequential 模型。为训练选择优化器和损失函数:

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

训练并验证模型:

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test,  y_test, verbose=2)
Epoch 1/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.2962 - accuracy: 0.9155
Epoch 2/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.1420 - accuracy: 0.9581
Epoch 3/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.1064 - accuracy: 0.9672
Epoch 4/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0885 - accuracy: 0.9730
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0749 - accuracy: 0.9765
313/313 - 0s - loss: 0.0748 - accuracy: 0.9778
[0.07484959065914154, 0.9778000116348267]

现在,这个照片分类器的准确度已经达到 98%。

您可以在 Github 查看源代码,想要了解更多,请登录 TensorFlow 官网阅读 TensorFlow 教程,也可关注 TensorFlow 官方微信公众号获取更多资讯与教程。

这篇关于初学者的 TensorFlow 2.0 教程的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!