自适应参数化ReLU是一种动态ReLU(Dynamic ReLU),于2019年5月3日投稿至IEEE Transactions on Industrial Electronics,于2020年1月24日录用,于2020年2月13日在IEEE官网公布。
从以往的调参结果来看,过拟合是最主要的问题。本文在调参记录12的基础上,将层数减少,减到9个残差模块,再试一次。
自适应参数化ReLU原理如下:
Keras程序如下:
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 14 04:17:45 2020 Implemented using TensorFlow 1.0.1 and Keras 2.2.1 Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458, Date of Publication: 13 Feb. 2020 @author: Minghang Zhao """ from __future__ import print_function import keras import numpy as np from keras.datasets import cifar10 from keras.layers import Dense, Conv2D, BatchNormalization, Activation, Minimum from keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D, Concatenate, Reshape from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras import optimizers from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler K.set_learning_phase(1) # The data, split between train and test sets (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_test = x_test-np.mean(x_train) x_train = x_train-np.mean(x_train) print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # Schedule the learning rate, multiply 0.1 every 1500 epoches def scheduler(epoch): if epoch % 1500 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.1) print("lr changed to {}".format(lr * 0.1)) return K.get_value(model.optimizer.lr) # An adaptively parametric rectifier linear unit (APReLU) def aprelu(inputs): # get the number of channels channels = inputs.get_shape().as_list()[-1] # get a zero feature map zeros_input = keras.layers.subtract([inputs, inputs]) # get a feature map with only positive features pos_input = Activation('relu')(inputs) # get a feature map with only negative features neg_input = Minimum()([inputs,zeros_input]) # define a network to obtain the scaling coefficients scales_p = GlobalAveragePooling2D()(pos_input) scales_n = GlobalAveragePooling2D()(neg_input) scales = Concatenate()([scales_n, scales_p]) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(scales) scales = Activation('relu')(scales) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(scales) scales = Activation('sigmoid')(scales) scales = Reshape((1,1,channels))(scales) # apply a paramtetric relu neg_part = keras.layers.multiply([scales, neg_input]) return keras.layers.add([pos_input, neg_part]) # Residual Block def residual_block(incoming, nb_blocks, out_channels, downsample=False, downsample_strides=2): residual = incoming in_channels = incoming.get_shape().as_list()[-1] for i in range(nb_blocks): identity = residual if not downsample: downsample_strides = 1 residual = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 3, strides=(downsample_strides, downsample_strides), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) residual = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) # Downsampling if downsample_strides > 1: identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity) # Zero_padding to match channels if in_channels != out_channels: zeros_identity = keras.layers.subtract([identity, identity]) identity = keras.layers.concatenate([identity, zeros_identity]) in_channels = out_channels residual = keras.layers.add([residual, identity]) return residual # define and train a model inputs = Input(shape=(32, 32, 3)) net = Conv2D(16, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs) net = residual_block(net, 3, 16, downsample=False) net = residual_block(net, 1, 32, downsample=True) net = residual_block(net, 2, 32, downsample=False) net = residual_block(net, 1, 64, downsample=True) net = residual_block(net, 2, 64, downsample=False) net = BatchNormalization(momentum=0.9, gamma_regularizer=l2(1e-4))(net) net = Activation('relu')(net) net = GlobalAveragePooling2D()(net) outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net) model = Model(inputs=inputs, outputs=outputs) sgd = optimizers.SGD(lr=0.1, decay=0., momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # data augmentation datagen = ImageDataGenerator( # randomly rotate images in the range (deg 0 to 180) rotation_range=30, # Range for random zoom zoom_range = 0.2, # shear angle in counter-clockwise direction in degrees shear_range = 30, # randomly flip images horizontal_flip=True, # randomly shift images horizontally width_shift_range=0.125, # randomly shift images vertically height_shift_range=0.125) reduce_lr = LearningRateScheduler(scheduler) # fit the model on the batches generated by datagen.flow(). model.fit_generator(datagen.flow(x_train, y_train, batch_size=625), validation_data=(x_test, y_test), epochs=5000, verbose=1, callbacks=[reduce_lr], workers=10) # get results K.set_learning_phase(0) DRSN_train_score = model.evaluate(x_train, y_train, batch_size=625, verbose=0) print('Train loss:', DRSN_train_score[0]) print('Train accuracy:', DRSN_train_score[1]) DRSN_test_score = model.evaluate(x_test, y_test, batch_size=625, verbose=0) print('Test loss:', DRSN_test_score[0]) print('Test accuracy:', DRSN_test_score[1])
实验结果如下:
Epoch 2500/5000 12s 151ms/step - loss: 0.1258 - acc: 0.9867 - val_loss: 0.4697 - val_acc: 0.9024 Epoch 2501/5000 12s 151ms/step - loss: 0.1274 - acc: 0.9852 - val_loss: 0.4688 - val_acc: 0.9026 Epoch 2502/5000 12s 151ms/step - loss: 0.1260 - acc: 0.9861 - val_loss: 0.4585 - val_acc: 0.9040 Epoch 2503/5000 12s 152ms/step - loss: 0.1241 - acc: 0.9869 - val_loss: 0.4489 - val_acc: 0.9066 Epoch 2504/5000 12s 152ms/step - loss: 0.1236 - acc: 0.9869 - val_loss: 0.4469 - val_acc: 0.9106 Epoch 2505/5000 12s 151ms/step - loss: 0.1276 - acc: 0.9850 - val_loss: 0.4515 - val_acc: 0.9034 Epoch 2506/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9864 - val_loss: 0.4586 - val_acc: 0.9074 Epoch 2507/5000 12s 151ms/step - loss: 0.1289 - acc: 0.9852 - val_loss: 0.4585 - val_acc: 0.9057 Epoch 2508/5000 12s 151ms/step - loss: 0.1285 - acc: 0.9853 - val_loss: 0.4485 - val_acc: 0.9077 Epoch 2509/5000 12s 151ms/step - loss: 0.1284 - acc: 0.9851 - val_loss: 0.4529 - val_acc: 0.9032 Epoch 2510/5000 12s 151ms/step - loss: 0.1287 - acc: 0.9855 - val_loss: 0.4567 - val_acc: 0.9040 Epoch 2511/5000 12s 151ms/step - loss: 0.1253 - acc: 0.9862 - val_loss: 0.4554 - val_acc: 0.9080 Epoch 2512/5000 12s 152ms/step - loss: 0.1262 - acc: 0.9859 - val_loss: 0.4477 - val_acc: 0.9086 Epoch 2513/5000 12s 151ms/step - loss: 0.1241 - acc: 0.9864 - val_loss: 0.4531 - val_acc: 0.9063 Epoch 2514/5000 12s 150ms/step - loss: 0.1247 - acc: 0.9866 - val_loss: 0.4484 - val_acc: 0.9073 Epoch 2515/5000 12s 151ms/step - loss: 0.1239 - acc: 0.9869 - val_loss: 0.4502 - val_acc: 0.9078 Epoch 2516/5000 12s 151ms/step - loss: 0.1275 - acc: 0.9857 - val_loss: 0.4790 - val_acc: 0.8981 Epoch 2517/5000 12s 152ms/step - loss: 0.1259 - acc: 0.9862 - val_loss: 0.4625 - val_acc: 0.9063 Epoch 2518/5000 12s 151ms/step - loss: 0.1278 - acc: 0.9853 - val_loss: 0.4751 - val_acc: 0.9009 Epoch 2519/5000 12s 151ms/step - loss: 0.1283 - acc: 0.9857 - val_loss: 0.4655 - val_acc: 0.9056 Epoch 2520/5000 12s 151ms/step - loss: 0.1275 - acc: 0.9859 - val_loss: 0.4386 - val_acc: 0.9085 Epoch 2521/5000 12s 151ms/step - loss: 0.1245 - acc: 0.9871 - val_loss: 0.4699 - val_acc: 0.9006 Epoch 2522/5000 12s 151ms/step - loss: 0.1278 - acc: 0.9860 - val_loss: 0.4520 - val_acc: 0.9050 Epoch 2523/5000 12s 151ms/step - loss: 0.1249 - acc: 0.9864 - val_loss: 0.4566 - val_acc: 0.9056 Epoch 2524/5000 12s 152ms/step - loss: 0.1278 - acc: 0.9855 - val_loss: 0.4650 - val_acc: 0.9018 Epoch 2525/5000 12s 151ms/step - loss: 0.1235 - acc: 0.9873 - val_loss: 0.4555 - val_acc: 0.9061 Epoch 2526/5000 12s 151ms/step - loss: 0.1260 - acc: 0.9862 - val_loss: 0.4556 - val_acc: 0.9061 Epoch 2527/5000 12s 152ms/step - loss: 0.1261 - acc: 0.9866 - val_loss: 0.4667 - val_acc: 0.9040 Epoch 2528/5000 12s 152ms/step - loss: 0.1240 - acc: 0.9874 - val_loss: 0.4539 - val_acc: 0.9083 Epoch 2529/5000 12s 152ms/step - loss: 0.1281 - acc: 0.9856 - val_loss: 0.4584 - val_acc: 0.9048 Epoch 2530/5000 12s 151ms/step - loss: 0.1234 - acc: 0.9871 - val_loss: 0.4538 - val_acc: 0.9048 Epoch 2531/5000 12s 151ms/step - loss: 0.1235 - acc: 0.9868 - val_loss: 0.4504 - val_acc: 0.9056 Epoch 2532/5000 12s 151ms/step - loss: 0.1247 - acc: 0.9871 - val_loss: 0.4529 - val_acc: 0.9053 Epoch 2533/5000 12s 150ms/step - loss: 0.1241 - acc: 0.9872 - val_loss: 0.4591 - val_acc: 0.9034 Epoch 2534/5000 12s 152ms/step - loss: 0.1255 - acc: 0.9865 - val_loss: 0.4502 - val_acc: 0.9058 Epoch 2535/5000 12s 151ms/step - loss: 0.1254 - acc: 0.9865 - val_loss: 0.4596 - val_acc: 0.9039 Epoch 2536/5000 12s 152ms/step - loss: 0.1239 - acc: 0.9872 - val_loss: 0.4488 - val_acc: 0.9040 Epoch 2537/5000 12s 151ms/step - loss: 0.1260 - acc: 0.9865 - val_loss: 0.4494 - val_acc: 0.9042 Epoch 2538/5000 12s 150ms/step - loss: 0.1288 - acc: 0.9851 - val_loss: 0.4621 - val_acc: 0.9039 Epoch 2539/5000 12s 152ms/step - loss: 0.1267 - acc: 0.9855 - val_loss: 0.4497 - val_acc: 0.9068 Epoch 2540/5000 12s 151ms/step - loss: 0.1250 - acc: 0.9869 - val_loss: 0.4626 - val_acc: 0.9024 Epoch 2541/5000 12s 152ms/step - loss: 0.1272 - acc: 0.9856 - val_loss: 0.4621 - val_acc: 0.9038 Epoch 2542/5000 12s 151ms/step - loss: 0.1258 - acc: 0.9862 - val_loss: 0.4738 - val_acc: 0.9044 Epoch 2543/5000 12s 152ms/step - loss: 0.1257 - acc: 0.9862 - val_loss: 0.4597 - val_acc: 0.9061 Epoch 2544/5000 12s 151ms/step - loss: 0.1271 - acc: 0.9854 - val_loss: 0.4571 - val_acc: 0.9008 Epoch 2545/5000 12s 151ms/step - loss: 0.1247 - acc: 0.9861 - val_loss: 0.4450 - val_acc: 0.9065 Epoch 2546/5000 12s 152ms/step - loss: 0.1273 - acc: 0.9860 - val_loss: 0.4568 - val_acc: 0.9031 Epoch 2547/5000 12s 151ms/step - loss: 0.1291 - acc: 0.9855 - val_loss: 0.4558 - val_acc: 0.9034 Epoch 2548/5000 12s 152ms/step - loss: 0.1280 - acc: 0.9849 - val_loss: 0.4463 - val_acc: 0.9077 Epoch 2549/5000 12s 151ms/step - loss: 0.1237 - acc: 0.9868 - val_loss: 0.4427 - val_acc: 0.9083 Epoch 2550/5000 12s 151ms/step - loss: 0.1247 - acc: 0.9865 - val_loss: 0.4486 - val_acc: 0.9060 Epoch 2551/5000 12s 152ms/step - loss: 0.1265 - acc: 0.9864 - val_loss: 0.4414 - val_acc: 0.9047 Epoch 2552/5000 12s 151ms/step - loss: 0.1275 - acc: 0.9859 - val_loss: 0.4652 - val_acc: 0.9003 Epoch 2553/5000 12s 151ms/step - loss: 0.1241 - acc: 0.9864 - val_loss: 0.4713 - val_acc: 0.8976 Epoch 2554/5000 12s 152ms/step - loss: 0.1258 - acc: 0.9862 - val_loss: 0.4549 - val_acc: 0.9048 Epoch 2555/5000 12s 151ms/step - loss: 0.1249 - acc: 0.9866 - val_loss: 0.4376 - val_acc: 0.9069 Epoch 2556/5000 12s 152ms/step - loss: 0.1251 - acc: 0.9866 - val_loss: 0.4519 - val_acc: 0.9062 Epoch 2557/5000 12s 151ms/step - loss: 0.1269 - acc: 0.9857 - val_loss: 0.4479 - val_acc: 0.9069 Epoch 2558/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9870 - val_loss: 0.4629 - val_acc: 0.9023 Epoch 2559/5000 12s 151ms/step - loss: 0.1257 - acc: 0.9866 - val_loss: 0.4487 - val_acc: 0.9039 Epoch 2560/5000 12s 151ms/step - loss: 0.1272 - acc: 0.9859 - val_loss: 0.4574 - val_acc: 0.9029 Epoch 2561/5000 12s 152ms/step - loss: 0.1238 - acc: 0.9872 - val_loss: 0.4530 - val_acc: 0.9073 Epoch 2562/5000 12s 152ms/step - loss: 0.1226 - acc: 0.9872 - val_loss: 0.4589 - val_acc: 0.9048 Epoch 2563/5000 12s 151ms/step - loss: 0.1283 - acc: 0.9854 - val_loss: 0.4525 - val_acc: 0.9032 Epoch 2564/5000 12s 151ms/step - loss: 0.1286 - acc: 0.9851 - val_loss: 0.4488 - val_acc: 0.9063 Epoch 2565/5000 12s 150ms/step - loss: 0.1263 - acc: 0.9862 - val_loss: 0.4520 - val_acc: 0.9044 Epoch 2566/5000 12s 152ms/step - loss: 0.1280 - acc: 0.9854 - val_loss: 0.4561 - val_acc: 0.9025 Epoch 2567/5000 12s 151ms/step - loss: 0.1259 - acc: 0.9860 - val_loss: 0.4532 - val_acc: 0.9034 Epoch 2568/5000 12s 156ms/step - loss: 0.1249 - acc: 0.9864 - val_loss: 0.4449 - val_acc: 0.9072 Epoch 2569/5000 12s 152ms/step - loss: 0.1269 - acc: 0.9857 - val_loss: 0.4465 - val_acc: 0.9056 Epoch 2570/5000 12s 153ms/step - loss: 0.1282 - acc: 0.9853 - val_loss: 0.4445 - val_acc: 0.9074 Epoch 2571/5000 12s 153ms/step - loss: 0.1268 - acc: 0.9857 - val_loss: 0.4496 - val_acc: 0.9028 Epoch 2572/5000 12s 152ms/step - loss: 0.1255 - acc: 0.9860 - val_loss: 0.4600 - val_acc: 0.9038 Epoch 2573/5000 12s 153ms/step - loss: 0.1206 - acc: 0.9884 - val_loss: 0.4555 - val_acc: 0.9057 Epoch 2574/5000 12s 152ms/step - loss: 0.1242 - acc: 0.9867 - val_loss: 0.4483 - val_acc: 0.9071 Epoch 2575/5000 12s 153ms/step - loss: 0.1225 - acc: 0.9871 - val_loss: 0.4497 - val_acc: 0.9054 Epoch 2576/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9876 - val_loss: 0.4645 - val_acc: 0.9039 Epoch 2577/5000 12s 153ms/step - loss: 0.1247 - acc: 0.9865 - val_loss: 0.4584 - val_acc: 0.9036 Epoch 2578/5000 12s 153ms/step - loss: 0.1248 - acc: 0.9864 - val_loss: 0.4666 - val_acc: 0.9045 Epoch 2579/5000 12s 153ms/step - loss: 0.1245 - acc: 0.9868 - val_loss: 0.4668 - val_acc: 0.9063 Epoch 2580/5000 12s 153ms/step - loss: 0.1253 - acc: 0.9862 - val_loss: 0.4609 - val_acc: 0.9023 Epoch 2581/5000 12s 153ms/step - loss: 0.1242 - acc: 0.9869 - val_loss: 0.4450 - val_acc: 0.9058 Epoch 2582/5000 12s 152ms/step - loss: 0.1253 - acc: 0.9863 - val_loss: 0.4391 - val_acc: 0.9068 Epoch 2583/5000 12s 153ms/step - loss: 0.1266 - acc: 0.9861 - val_loss: 0.4420 - val_acc: 0.9066 Epoch 2584/5000 12s 153ms/step - loss: 0.1255 - acc: 0.9865 - val_loss: 0.4480 - val_acc: 0.9056 Epoch 2585/5000 12s 152ms/step - loss: 0.1281 - acc: 0.9851 - val_loss: 0.4449 - val_acc: 0.9052 Epoch 2586/5000 12s 152ms/step - loss: 0.1247 - acc: 0.9868 - val_loss: 0.4536 - val_acc: 0.9050 Epoch 2587/5000 12s 152ms/step - loss: 0.1273 - acc: 0.9857 - val_loss: 0.4712 - val_acc: 0.9007 Epoch 2588/5000 12s 153ms/step - loss: 0.1292 - acc: 0.9852 - val_loss: 0.4495 - val_acc: 0.9059 Epoch 2589/5000 12s 153ms/step - loss: 0.1253 - acc: 0.9866 - val_loss: 0.4626 - val_acc: 0.9051 Epoch 2590/5000 12s 153ms/step - loss: 0.1248 - acc: 0.9867 - val_loss: 0.4609 - val_acc: 0.9021 Epoch 2591/5000 12s 152ms/step - loss: 0.1273 - acc: 0.9855 - val_loss: 0.4594 - val_acc: 0.9039 Epoch 2592/5000 12s 152ms/step - loss: 0.1257 - acc: 0.9857 - val_loss: 0.4519 - val_acc: 0.9023 Epoch 2593/5000 12s 152ms/step - loss: 0.1317 - acc: 0.9845 - val_loss: 0.4526 - val_acc: 0.9063 Epoch 2594/5000 12s 153ms/step - loss: 0.1255 - acc: 0.9864 - val_loss: 0.4529 - val_acc: 0.9066 Epoch 2595/5000 12s 153ms/step - loss: 0.1244 - acc: 0.9863 - val_loss: 0.4540 - val_acc: 0.9076 Epoch 2596/5000 12s 153ms/step - loss: 0.1268 - acc: 0.9859 - val_loss: 0.4632 - val_acc: 0.9022 Epoch 2597/5000 12s 153ms/step - loss: 0.1250 - acc: 0.9864 - val_loss: 0.4440 - val_acc: 0.9057 Epoch 2598/5000 12s 153ms/step - loss: 0.1246 - acc: 0.9870 - val_loss: 0.4489 - val_acc: 0.9035 Epoch 2599/5000 12s 153ms/step - loss: 0.1252 - acc: 0.9857 - val_loss: 0.4671 - val_acc: 0.9035 Epoch 2600/5000 12s 153ms/step - loss: 0.1253 - acc: 0.9866 - val_loss: 0.4532 - val_acc: 0.9077 Epoch 2601/5000 12s 153ms/step - loss: 0.1228 - acc: 0.9870 - val_loss: 0.4503 - val_acc: 0.9026 Epoch 2602/5000 12s 153ms/step - loss: 0.1225 - acc: 0.9873 - val_loss: 0.4490 - val_acc: 0.9027 Epoch 2603/5000 12s 152ms/step - loss: 0.1238 - acc: 0.9871 - val_loss: 0.4430 - val_acc: 0.9066 Epoch 2604/5000 12s 152ms/step - loss: 0.1279 - acc: 0.9856 - val_loss: 0.4576 - val_acc: 0.9054 Epoch 2605/5000 12s 152ms/step - loss: 0.1253 - acc: 0.9864 - val_loss: 0.4425 - val_acc: 0.9069 Epoch 2606/5000 12s 152ms/step - loss: 0.1269 - acc: 0.9859 - val_loss: 0.4542 - val_acc: 0.9024 Epoch 2607/5000 12s 152ms/step - loss: 0.1281 - acc: 0.9852 - val_loss: 0.4673 - val_acc: 0.9023 Epoch 2608/5000 12s 152ms/step - loss: 0.1269 - acc: 0.9864 - val_loss: 0.4638 - val_acc: 0.9025 Epoch 2609/5000 12s 152ms/step - loss: 0.1261 - acc: 0.9861 - val_loss: 0.4499 - val_acc: 0.9059 Epoch 2610/5000 12s 152ms/step - loss: 0.1240 - acc: 0.9871 - val_loss: 0.4502 - val_acc: 0.9070 Epoch 2611/5000 12s 151ms/step - loss: 0.1236 - acc: 0.9874 - val_loss: 0.4592 - val_acc: 0.9018 Epoch 2612/5000 12s 151ms/step - loss: 0.1233 - acc: 0.9874 - val_loss: 0.4603 - val_acc: 0.9032 Epoch 2613/5000 12s 151ms/step - loss: 0.1265 - acc: 0.9853 - val_loss: 0.4574 - val_acc: 0.9056 Epoch 2614/5000 12s 152ms/step - loss: 0.1229 - acc: 0.9871 - val_loss: 0.4514 - val_acc: 0.9052 Epoch 2615/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9869 - val_loss: 0.4699 - val_acc: 0.9013 Epoch 2616/5000 12s 151ms/step - loss: 0.1248 - acc: 0.9863 - val_loss: 0.4715 - val_acc: 0.8995 Epoch 2617/5000 12s 151ms/step - loss: 0.1284 - acc: 0.9853 - val_loss: 0.4647 - val_acc: 0.9043 Epoch 2618/5000 12s 151ms/step - loss: 0.1267 - acc: 0.9857 - val_loss: 0.4656 - val_acc: 0.9005 Epoch 2619/5000 12s 152ms/step - loss: 0.1232 - acc: 0.9874 - val_loss: 0.4657 - val_acc: 0.9035 Epoch 2620/5000 12s 152ms/step - loss: 0.1274 - acc: 0.9859 - val_loss: 0.4522 - val_acc: 0.9051 Epoch 2621/5000 12s 151ms/step - loss: 0.1275 - acc: 0.9859 - val_loss: 0.4528 - val_acc: 0.9034 Epoch 2622/5000 12s 152ms/step - loss: 0.1258 - acc: 0.9863 - val_loss: 0.4600 - val_acc: 0.9036 Epoch 2623/5000 12s 152ms/step - loss: 0.1245 - acc: 0.9865 - val_loss: 0.4626 - val_acc: 0.9047 Epoch 2624/5000 12s 152ms/step - loss: 0.1241 - acc: 0.9866 - val_loss: 0.4644 - val_acc: 0.9043 Epoch 2625/5000 12s 152ms/step - loss: 0.1245 - acc: 0.9871 - val_loss: 0.4762 - val_acc: 0.9035 Epoch 2626/5000 12s 152ms/step - loss: 0.1263 - acc: 0.9859 - val_loss: 0.4579 - val_acc: 0.9033 Epoch 2627/5000 12s 151ms/step - loss: 0.1253 - acc: 0.9867 - val_loss: 0.4616 - val_acc: 0.9022 Epoch 2628/5000 12s 151ms/step - loss: 0.1268 - acc: 0.9858 - val_loss: 0.4721 - val_acc: 0.9026 Epoch 2629/5000 12s 151ms/step - loss: 0.1270 - acc: 0.9854 - val_loss: 0.4528 - val_acc: 0.9048 Epoch 2630/5000 12s 151ms/step - loss: 0.1258 - acc: 0.9863 - val_loss: 0.4496 - val_acc: 0.9056 Epoch 2631/5000 12s 152ms/step - loss: 0.1241 - acc: 0.9868 - val_loss: 0.4469 - val_acc: 0.9058 Epoch 2632/5000 12s 151ms/step - loss: 0.1261 - acc: 0.9865 - val_loss: 0.4923 - val_acc: 0.8972 Epoch 2633/5000 12s 152ms/step - loss: 0.1255 - acc: 0.9860 - val_loss: 0.4662 - val_acc: 0.9011 Epoch 2634/5000 12s 151ms/step - loss: 0.1230 - acc: 0.9873 - val_loss: 0.4461 - val_acc: 0.9055 Epoch 2635/5000 12s 151ms/step - loss: 0.1206 - acc: 0.9877 - val_loss: 0.4495 - val_acc: 0.9055 Epoch 2636/5000 12s 152ms/step - loss: 0.1234 - acc: 0.9874 - val_loss: 0.4671 - val_acc: 0.9053 Epoch 2637/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9872 - val_loss: 0.4637 - val_acc: 0.9032 Epoch 2638/5000 12s 151ms/step - loss: 0.1221 - acc: 0.9874 - val_loss: 0.4634 - val_acc: 0.9042 Epoch 2639/5000 12s 151ms/step - loss: 0.1209 - acc: 0.9877 - val_loss: 0.4655 - val_acc: 0.9023 Epoch 2640/5000 12s 152ms/step - loss: 0.1258 - acc: 0.9864 - val_loss: 0.4556 - val_acc: 0.9065 Epoch 2641/5000 12s 152ms/step - loss: 0.1247 - acc: 0.9867 - val_loss: 0.4576 - val_acc: 0.9018 Epoch 2642/5000 12s 152ms/step - loss: 0.1274 - acc: 0.9855 - val_loss: 0.4584 - val_acc: 0.9051 Epoch 2643/5000 12s 152ms/step - loss: 0.1282 - acc: 0.9856 - val_loss: 0.4528 - val_acc: 0.9066 Epoch 2644/5000 12s 151ms/step - loss: 0.1270 - acc: 0.9858 - val_loss: 0.4617 - val_acc: 0.9015 Epoch 2645/5000 12s 152ms/step - loss: 0.1279 - acc: 0.9853 - val_loss: 0.4448 - val_acc: 0.9063 Epoch 2646/5000 12s 151ms/step - loss: 0.1256 - acc: 0.9865 - val_loss: 0.4449 - val_acc: 0.9055 Epoch 2647/5000 12s 152ms/step - loss: 0.1259 - acc: 0.9864 - val_loss: 0.4429 - val_acc: 0.9052 Epoch 2648/5000 12s 152ms/step - loss: 0.1244 - acc: 0.9869 - val_loss: 0.4474 - val_acc: 0.9038 Epoch 2649/5000 12s 151ms/step - loss: 0.1236 - acc: 0.9874 - val_loss: 0.4459 - val_acc: 0.9072 Epoch 2650/5000 12s 151ms/step - loss: 0.1246 - acc: 0.9872 - val_loss: 0.4469 - val_acc: 0.9039 Epoch 2651/5000 12s 151ms/step - loss: 0.1254 - acc: 0.9868 - val_loss: 0.4540 - val_acc: 0.9056 Epoch 2652/5000 12s 151ms/step - loss: 0.1261 - acc: 0.9866 - val_loss: 0.4616 - val_acc: 0.9003 Epoch 2653/5000 12s 151ms/step - loss: 0.1254 - acc: 0.9860 - val_loss: 0.4525 - val_acc: 0.9029 Epoch 2654/5000 12s 151ms/step - loss: 0.1226 - acc: 0.9874 - val_loss: 0.4589 - val_acc: 0.9032 Epoch 2655/5000 12s 151ms/step - loss: 0.1244 - acc: 0.9868 - val_loss: 0.4548 - val_acc: 0.9027 Epoch 2656/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9871 - val_loss: 0.4438 - val_acc: 0.9057 Epoch 2657/5000 12s 151ms/step - loss: 0.1228 - acc: 0.9869 - val_loss: 0.4554 - val_acc: 0.9045 Epoch 2658/5000 12s 152ms/step - loss: 0.1280 - acc: 0.9857 - val_loss: 0.4481 - val_acc: 0.9066 Epoch 2659/5000 12s 152ms/step - loss: 0.1251 - acc: 0.9861 - val_loss: 0.4492 - val_acc: 0.9075 Epoch 2660/5000 12s 151ms/step - loss: 0.1222 - acc: 0.9873 - val_loss: 0.4501 - val_acc: 0.9045 Epoch 2661/5000 12s 152ms/step - loss: 0.1251 - acc: 0.9864 - val_loss: 0.4597 - val_acc: 0.9040 Epoch 2662/5000 12s 151ms/step - loss: 0.1258 - acc: 0.9860 - val_loss: 0.4588 - val_acc: 0.9039 Epoch 2663/5000 12s 152ms/step - loss: 0.1235 - acc: 0.9863 - val_loss: 0.4472 - val_acc: 0.9056 Epoch 2664/5000 12s 152ms/step - loss: 0.1215 - acc: 0.9874 - val_loss: 0.4674 - val_acc: 0.9004 Epoch 2665/5000 12s 151ms/step - loss: 0.1239 - acc: 0.9864 - val_loss: 0.4674 - val_acc: 0.9026 Epoch 2666/5000 12s 151ms/step - loss: 0.1241 - acc: 0.9867 - val_loss: 0.4636 - val_acc: 0.9023 Epoch 2667/5000 12s 151ms/step - loss: 0.1250 - acc: 0.9866 - val_loss: 0.4620 - val_acc: 0.9025 Epoch 2668/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9864 - val_loss: 0.4758 - val_acc: 0.8995 Epoch 2669/5000 12s 152ms/step - loss: 0.1278 - acc: 0.9858 - val_loss: 0.4816 - val_acc: 0.8986 Epoch 2670/5000 12s 152ms/step - loss: 0.1251 - acc: 0.9864 - val_loss: 0.4692 - val_acc: 0.9009 Epoch 2671/5000 12s 151ms/step - loss: 0.1281 - acc: 0.9852 - val_loss: 0.4615 - val_acc: 0.9024 Epoch 2672/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9868 - val_loss: 0.4583 - val_acc: 0.9055 Epoch 2673/5000 12s 152ms/step - loss: 0.1228 - acc: 0.9871 - val_loss: 0.4689 - val_acc: 0.9039 Epoch 2674/5000 12s 152ms/step - loss: 0.1267 - acc: 0.9856 - val_loss: 0.4596 - val_acc: 0.9049 Epoch 2675/5000 12s 151ms/step - loss: 0.1289 - acc: 0.9847 - val_loss: 0.4575 - val_acc: 0.9020 Epoch 2676/5000 12s 152ms/step - loss: 0.1234 - acc: 0.9870 - val_loss: 0.4527 - val_acc: 0.9068 Epoch 2677/5000 12s 151ms/step - loss: 0.1248 - acc: 0.9865 - val_loss: 0.4588 - val_acc: 0.9035 Epoch 2678/5000 12s 151ms/step - loss: 0.1234 - acc: 0.9866 - val_loss: 0.4667 - val_acc: 0.9009 Epoch 2679/5000 12s 152ms/step - loss: 0.1234 - acc: 0.9869 - val_loss: 0.4613 - val_acc: 0.9032 Epoch 2680/5000 12s 151ms/step - loss: 0.1248 - acc: 0.9860 - val_loss: 0.4748 - val_acc: 0.9014 Epoch 2681/5000 12s 152ms/step - loss: 0.1256 - acc: 0.9856 - val_loss: 0.4579 - val_acc: 0.9051 Epoch 2682/5000 12s 151ms/step - loss: 0.1276 - acc: 0.9854 - val_loss: 0.4688 - val_acc: 0.9019 Epoch 2683/5000 12s 152ms/step - loss: 0.1237 - acc: 0.9866 - val_loss: 0.4623 - val_acc: 0.9023 Epoch 2684/5000 12s 152ms/step - loss: 0.1232 - acc: 0.9872 - val_loss: 0.4618 - val_acc: 0.9033 Epoch 2685/5000 12s 151ms/step - loss: 0.1253 - acc: 0.9865 - val_loss: 0.4712 - val_acc: 0.9007 Epoch 2686/5000 12s 151ms/step - loss: 0.1248 - acc: 0.9864 - val_loss: 0.4675 - val_acc: 0.9035 Epoch 2687/5000 12s 152ms/step - loss: 0.1291 - acc: 0.9851 - val_loss: 0.4600 - val_acc: 0.9031 Epoch 2688/5000 12s 151ms/step - loss: 0.1255 - acc: 0.9862 - val_loss: 0.4623 - val_acc: 0.9017 Epoch 2689/5000 12s 152ms/step - loss: 0.1273 - acc: 0.9854 - val_loss: 0.4609 - val_acc: 0.9021 Epoch 2690/5000 12s 152ms/step - loss: 0.1262 - acc: 0.9862 - val_loss: 0.4454 - val_acc: 0.9048 Epoch 2691/5000 12s 151ms/step - loss: 0.1231 - acc: 0.9869 - val_loss: 0.4612 - val_acc: 0.9040 Epoch 2692/5000 12s 151ms/step - loss: 0.1254 - acc: 0.9867 - val_loss: 0.4524 - val_acc: 0.9045 Epoch 2693/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9874 - val_loss: 0.4567 - val_acc: 0.9045 Epoch 2694/5000 12s 151ms/step - loss: 0.1243 - acc: 0.9864 - val_loss: 0.4603 - val_acc: 0.9023 Epoch 2695/5000 12s 151ms/step - loss: 0.1269 - acc: 0.9861 - val_loss: 0.4714 - val_acc: 0.8998 Epoch 2696/5000 12s 152ms/step - loss: 0.1240 - acc: 0.9866 - val_loss: 0.4402 - val_acc: 0.9068 Epoch 2697/5000 12s 156ms/step - loss: 0.1245 - acc: 0.9864 - val_loss: 0.4597 - val_acc: 0.9040 Epoch 2698/5000 12s 151ms/step - loss: 0.1255 - acc: 0.9863 - val_loss: 0.4499 - val_acc: 0.9045 Epoch 2699/5000 12s 152ms/step - loss: 0.1223 - acc: 0.9876 - val_loss: 0.4660 - val_acc: 0.9054 Epoch 2700/5000 12s 152ms/step - loss: 0.1248 - acc: 0.9865 - val_loss: 0.4537 - val_acc: 0.9045 Epoch 2701/5000 12s 154ms/step - loss: 0.1252 - acc: 0.9864 - val_loss: 0.4683 - val_acc: 0.9019 Epoch 2702/5000 12s 153ms/step - loss: 0.1254 - acc: 0.9859 - val_loss: 0.4657 - val_acc: 0.9039 Epoch 2703/5000 12s 153ms/step - loss: 0.1234 - acc: 0.9874 - val_loss: 0.4679 - val_acc: 0.9006 Epoch 2704/5000 12s 153ms/step - loss: 0.1268 - acc: 0.9856 - val_loss: 0.4724 - val_acc: 0.8994 Epoch 2705/5000 12s 153ms/step - loss: 0.1244 - acc: 0.9869 - val_loss: 0.4762 - val_acc: 0.8988 Epoch 2706/5000 12s 153ms/step - loss: 0.1245 - acc: 0.9869 - val_loss: 0.4669 - val_acc: 0.9034 Epoch 2707/5000 12s 153ms/step - loss: 0.1226 - acc: 0.9873 - val_loss: 0.4629 - val_acc: 0.9046 Epoch 2708/5000 12s 152ms/step - loss: 0.1244 - acc: 0.9868 - val_loss: 0.4528 - val_acc: 0.9066 Epoch 2709/5000 12s 153ms/step - loss: 0.1208 - acc: 0.9874 - val_loss: 0.4600 - val_acc: 0.9013 Epoch 2710/5000 12s 153ms/step - loss: 0.1251 - acc: 0.9856 - val_loss: 0.4551 - val_acc: 0.9039 Epoch 2711/5000 12s 153ms/step - loss: 0.1242 - acc: 0.9872 - val_loss: 0.4457 - val_acc: 0.9073 Epoch 2712/5000 12s 153ms/step - loss: 0.1269 - acc: 0.9859 - val_loss: 0.4577 - val_acc: 0.9027 Epoch 2713/5000 12s 153ms/step - loss: 0.1295 - acc: 0.9846 - val_loss: 0.4609 - val_acc: 0.9039 Epoch 2714/5000 12s 153ms/step - loss: 0.1244 - acc: 0.9870 - val_loss: 0.4614 - val_acc: 0.9019 Epoch 2715/5000 12s 153ms/step - loss: 0.1213 - acc: 0.9877 - val_loss: 0.4560 - val_acc: 0.9046 Epoch 2716/5000 12s 152ms/step - loss: 0.1252 - acc: 0.9862 - val_loss: 0.4501 - val_acc: 0.9059 Epoch 2717/5000 12s 153ms/step - loss: 0.1257 - acc: 0.9860 - val_loss: 0.4686 - val_acc: 0.9015 Epoch 2718/5000 12s 153ms/step - loss: 0.1233 - acc: 0.9870 - val_loss: 0.4636 - val_acc: 0.9022 Epoch 2719/5000 12s 153ms/step - loss: 0.1242 - acc: 0.9864 - val_loss: 0.4403 - val_acc: 0.9086 Epoch 2720/5000 12s 153ms/step - loss: 0.1268 - acc: 0.9858 - val_loss: 0.4516 - val_acc: 0.9050 Epoch 2721/5000 12s 152ms/step - loss: 0.1222 - acc: 0.9876 - val_loss: 0.4555 - val_acc: 0.9055 Epoch 2722/5000 12s 152ms/step - loss: 0.1192 - acc: 0.9883 - val_loss: 0.4387 - val_acc: 0.9076 Epoch 2723/5000 12s 152ms/step - loss: 0.1235 - acc: 0.9868 - val_loss: 0.4663 - val_acc: 0.9059 Epoch 2724/5000 12s 152ms/step - loss: 0.1246 - acc: 0.9862 - val_loss: 0.4729 - val_acc: 0.9028 Epoch 2725/5000 12s 152ms/step - loss: 0.1291 - acc: 0.9844 - val_loss: 0.4582 - val_acc: 0.9037 Epoch 2726/5000 12s 152ms/step - loss: 0.1228 - acc: 0.9872 - val_loss: 0.4613 - val_acc: 0.9028 Epoch 2727/5000 12s 152ms/step - loss: 0.1225 - acc: 0.9870 - val_loss: 0.4545 - val_acc: 0.9074 Epoch 2728/5000 12s 152ms/step - loss: 0.1225 - acc: 0.9873 - val_loss: 0.4643 - val_acc: 0.9047 Epoch 2729/5000 12s 152ms/step - loss: 0.1240 - acc: 0.9872 - val_loss: 0.4518 - val_acc: 0.9052 Epoch 2730/5000 12s 152ms/step - loss: 0.1248 - acc: 0.9867 - val_loss: 0.4580 - val_acc: 0.9045 Epoch 2731/5000 12s 152ms/step - loss: 0.1258 - acc: 0.9863 - val_loss: 0.4620 - val_acc: 0.9028 Epoch 2732/5000 12s 152ms/step - loss: 0.1273 - acc: 0.9862 - val_loss: 0.4536 - val_acc: 0.9053 Epoch 2733/5000 12s 152ms/step - loss: 0.1273 - acc: 0.9862 - val_loss: 0.4440 - val_acc: 0.9074 Epoch 2734/5000 12s 152ms/step - loss: 0.1257 - acc: 0.9856 - val_loss: 0.4456 - val_acc: 0.9043 Epoch 2735/5000 12s 151ms/step - loss: 0.1231 - acc: 0.9876 - val_loss: 0.4559 - val_acc: 0.9051 Epoch 2736/5000 12s 152ms/step - loss: 0.1254 - acc: 0.9858 - val_loss: 0.4470 - val_acc: 0.9077 Epoch 2737/5000 12s 152ms/step - loss: 0.1246 - acc: 0.9866 - val_loss: 0.4549 - val_acc: 0.9048 Epoch 2738/5000 12s 152ms/step - loss: 0.1223 - acc: 0.9874 - val_loss: 0.4676 - val_acc: 0.9047 Epoch 2739/5000 12s 151ms/step - loss: 0.1228 - acc: 0.9871 - val_loss: 0.4466 - val_acc: 0.9072 Epoch 2740/5000 12s 152ms/step - loss: 0.1236 - acc: 0.9869 - val_loss: 0.4514 - val_acc: 0.9045 Epoch 2741/5000 12s 151ms/step - loss: 0.1271 - acc: 0.9853 - val_loss: 0.4638 - val_acc: 0.9020 Epoch 2742/5000 12s 152ms/step - loss: 0.1256 - acc: 0.9860 - val_loss: 0.4513 - val_acc: 0.9084 Epoch 2743/5000 12s 152ms/step - loss: 0.1241 - acc: 0.9868 - val_loss: 0.4537 - val_acc: 0.9090 Epoch 2744/5000 12s 152ms/step - loss: 0.1242 - acc: 0.9866 - val_loss: 0.4572 - val_acc: 0.9058 Epoch 2745/5000 12s 152ms/step - loss: 0.1251 - acc: 0.9858 - val_loss: 0.4705 - val_acc: 0.9030 Epoch 2746/5000 12s 151ms/step - loss: 0.1258 - acc: 0.9858 - val_loss: 0.4691 - val_acc: 0.9034 Epoch 2747/5000 12s 151ms/step - loss: 0.1255 - acc: 0.9865 - val_loss: 0.4597 - val_acc: 0.9013 Epoch 2748/5000 12s 151ms/step - loss: 0.1255 - acc: 0.9862 - val_loss: 0.4440 - val_acc: 0.9070 Epoch 2749/5000 12s 152ms/step - loss: 0.1256 - acc: 0.9856 - val_loss: 0.4690 - val_acc: 0.9029 Epoch 2750/5000 12s 152ms/step - loss: 0.1253 - acc: 0.9864 - val_loss: 0.4515 - val_acc: 0.9037 Epoch 2751/5000 12s 151ms/step - loss: 0.1230 - acc: 0.9869 - val_loss: 0.4741 - val_acc: 0.9035 Epoch 2752/5000 12s 151ms/step - loss: 0.1289 - acc: 0.9846 - val_loss: 0.4739 - val_acc: 0.9010 Epoch 2753/5000 12s 151ms/step - loss: 0.1281 - acc: 0.9854 - val_loss: 0.4494 - val_acc: 0.9033 Epoch 2754/5000 12s 151ms/step - loss: 0.1258 - acc: 0.9863 - val_loss: 0.4558 - val_acc: 0.9058 Epoch 2755/5000 12s 151ms/step - loss: 0.1261 - acc: 0.9859 - val_loss: 0.4617 - val_acc: 0.9045 Epoch 2756/5000 12s 151ms/step - loss: 0.1250 - acc: 0.9864 - val_loss: 0.4554 - val_acc: 0.9052 Epoch 2757/5000 12s 151ms/step - loss: 0.1262 - acc: 0.9859 - val_loss: 0.4478 - val_acc: 0.9060 Epoch 2758/5000 12s 152ms/step - loss: 0.1225 - acc: 0.9872 - val_loss: 0.4455 - val_acc: 0.9047 Epoch 2759/5000 12s 151ms/step - loss: 0.1234 - acc: 0.9868 - val_loss: 0.4477 - val_acc: 0.9067 Epoch 2760/5000 12s 152ms/step - loss: 0.1271 - acc: 0.9859 - val_loss: 0.4535 - val_acc: 0.9032 Epoch 2761/5000 12s 151ms/step - loss: 0.1238 - acc: 0.9867 - val_loss: 0.4691 - val_acc: 0.9012 Epoch 2762/5000 12s 151ms/step - loss: 0.1233 - acc: 0.9868 - val_loss: 0.4584 - val_acc: 0.9029 Epoch 2763/5000 12s 151ms/step - loss: 0.1244 - acc: 0.9871 - val_loss: 0.4508 - val_acc: 0.9016 Epoch 2764/5000 12s 151ms/step - loss: 0.1233 - acc: 0.9865 - val_loss: 0.4672 - val_acc: 0.9027 Epoch 2765/5000 12s 151ms/step - loss: 0.1264 - acc: 0.9863 - val_loss: 0.4467 - val_acc: 0.9066 Epoch 2766/5000 12s 151ms/step - loss: 0.1244 - acc: 0.9866 - val_loss: 0.4622 - val_acc: 0.9018 Epoch 2767/5000 12s 151ms/step - loss: 0.1231 - acc: 0.9872 - val_loss: 0.4463 - val_acc: 0.9054 Epoch 2768/5000 12s 151ms/step - loss: 0.1241 - acc: 0.9867 - val_loss: 0.4526 - val_acc: 0.9055 Epoch 2769/5000 12s 151ms/step - loss: 0.1271 - acc: 0.9854 - val_loss: 0.4525 - val_acc: 0.9023 Epoch 2770/5000 12s 152ms/step - loss: 0.1225 - acc: 0.9878 - val_loss: 0.4537 - val_acc: 0.9046 Epoch 2771/5000 12s 151ms/step - loss: 0.1248 - acc: 0.9865 - val_loss: 0.4617 - val_acc: 0.9050 Epoch 2772/5000 12s 151ms/step - loss: 0.1251 - acc: 0.9861 - val_loss: 0.4598 - val_acc: 0.9050 Epoch 2773/5000 12s 151ms/step - loss: 0.1268 - acc: 0.9859 - val_loss: 0.4630 - val_acc: 0.9044 Epoch 2774/5000 12s 152ms/step - loss: 0.1231 - acc: 0.9874 - val_loss: 0.4568 - val_acc: 0.9015 Epoch 2775/5000 12s 152ms/step - loss: 0.1254 - acc: 0.9861 - val_loss: 0.4578 - val_acc: 0.9038 Epoch 2776/5000 12s 151ms/step - loss: 0.1225 - acc: 0.9873 - val_loss: 0.4647 - val_acc: 0.9030 Epoch 2777/5000 12s 151ms/step - loss: 0.1227 - acc: 0.9874 - val_loss: 0.4515 - val_acc: 0.9047 Epoch 2778/5000 12s 151ms/step - loss: 0.1261 - acc: 0.9858 - val_loss: 0.4580 - val_acc: 0.9032 Epoch 2779/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9866 - val_loss: 0.4722 - val_acc: 0.9035 Epoch 2780/5000 12s 151ms/step - loss: 0.1236 - acc: 0.9871 - val_loss: 0.4720 - val_acc: 0.9014 Epoch 2781/5000 12s 151ms/step - loss: 0.1264 - acc: 0.9859 - val_loss: 0.4523 - val_acc: 0.9031 Epoch 2782/5000 12s 152ms/step - loss: 0.1261 - acc: 0.9859 - val_loss: 0.4556 - val_acc: 0.9046 Epoch 2783/5000 12s 151ms/step - loss: 0.1266 - acc: 0.9859 - val_loss: 0.4390 - val_acc: 0.9088 Epoch 2784/5000 12s 151ms/step - loss: 0.1244 - acc: 0.9862 - val_loss: 0.4533 - val_acc: 0.9033 Epoch 2785/5000 12s 152ms/step - loss: 0.1227 - acc: 0.9871 - val_loss: 0.4548 - val_acc: 0.9038 Epoch 2786/5000 12s 152ms/step - loss: 0.1229 - acc: 0.9870 - val_loss: 0.4468 - val_acc: 0.9066 Epoch 2787/5000 12s 152ms/step - loss: 0.1220 - acc: 0.9870 - val_loss: 0.4466 - val_acc: 0.9060 Epoch 2788/5000 12s 152ms/step - loss: 0.1294 - acc: 0.9849 - val_loss: 0.4455 - val_acc: 0.9025 Epoch 2789/5000 12s 151ms/step - loss: 0.1251 - acc: 0.9866 - val_loss: 0.4618 - val_acc: 0.9024 Epoch 2790/5000 12s 151ms/step - loss: 0.1235 - acc: 0.9871 - val_loss: 0.4551 - val_acc: 0.9035 Epoch 2791/5000 12s 152ms/step - loss: 0.1260 - acc: 0.9858 - val_loss: 0.4594 - val_acc: 0.9025 Epoch 2792/5000 12s 151ms/step - loss: 0.1207 - acc: 0.9879 - val_loss: 0.4490 - val_acc: 0.9024 Epoch 2793/5000 12s 151ms/step - loss: 0.1224 - acc: 0.9874 - val_loss: 0.4498 - val_acc: 0.9037 Epoch 2794/5000 12s 151ms/step - loss: 0.1236 - acc: 0.9874 - val_loss: 0.4533 - val_acc: 0.9008 Epoch 2795/5000 12s 152ms/step - loss: 0.1224 - acc: 0.9874 - val_loss: 0.4410 - val_acc: 0.9074 Epoch 2796/5000 12s 152ms/step - loss: 0.1237 - acc: 0.9867 - val_loss: 0.4506 - val_acc: 0.9057 Epoch 2797/5000 12s 151ms/step - loss: 0.1237 - acc: 0.9868 - val_loss: 0.4451 - val_acc: 0.9042 Epoch 2798/5000 12s 151ms/step - loss: 0.1247 - acc: 0.9862 - val_loss: 0.4678 - val_acc: 0.9009 Epoch 2799/5000 12s 151ms/step - loss: 0.1262 - acc: 0.9864 - val_loss: 0.4639 - val_acc: 0.9024 Epoch 2800/5000 12s 151ms/step - loss: 0.1269 - acc: 0.9857 - val_loss: 0.4550 - val_acc: 0.9029 Epoch 2801/5000 12s 151ms/step - loss: 0.1273 - acc: 0.9857 - val_loss: 0.4514 - val_acc: 0.9036 Epoch 2802/5000 12s 152ms/step - loss: 0.1240 - acc: 0.9869 - val_loss: 0.4525 - val_acc: 0.9031 Epoch 2803/5000 12s 151ms/step - loss: 0.1244 - acc: 0.9865 - val_loss: 0.4652 - val_acc: 0.9018 Epoch 2804/5000 12s 151ms/step - loss: 0.1265 - acc: 0.9864 - val_loss: 0.4765 - val_acc: 0.8992 Epoch 2805/5000 12s 151ms/step - loss: 0.1260 - acc: 0.9855 - val_loss: 0.4589 - val_acc: 0.9025 Epoch 2806/5000 12s 151ms/step - loss: 0.1244 - acc: 0.9870 - val_loss: 0.4605 - val_acc: 0.9039 Epoch 2807/5000 12s 151ms/step - loss: 0.1243 - acc: 0.9864 - val_loss: 0.4580 - val_acc: 0.9028 Epoch 2808/5000 12s 152ms/step - loss: 0.1213 - acc: 0.9874 - val_loss: 0.4514 - val_acc: 0.9060 Epoch 2809/5000 12s 151ms/step - loss: 0.1213 - acc: 0.9876 - val_loss: 0.4663 - val_acc: 0.9008 Epoch 2810/5000 12s 152ms/step - loss: 0.1249 - acc: 0.9870 - val_loss: 0.4634 - val_acc: 0.9025 Epoch 2811/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9865 - val_loss: 0.4576 - val_acc: 0.9057 Epoch 2812/5000 12s 151ms/step - loss: 0.1250 - acc: 0.9861 - val_loss: 0.4713 - val_acc: 0.9003 Epoch 2813/5000 12s 151ms/step - loss: 0.1257 - acc: 0.9859 - val_loss: 0.4511 - val_acc: 0.9059 Epoch 2814/5000 12s 152ms/step - loss: 0.1257 - acc: 0.9867 - val_loss: 0.4700 - val_acc: 0.9009 Epoch 2815/5000 12s 151ms/step - loss: 0.1253 - acc: 0.9860 - val_loss: 0.4602 - val_acc: 0.9046 Epoch 2816/5000 12s 151ms/step - loss: 0.1262 - acc: 0.9856 - val_loss: 0.4570 - val_acc: 0.9012 Epoch 2817/5000 12s 151ms/step - loss: 0.1256 - acc: 0.9861 - val_loss: 0.4609 - val_acc: 0.9020 Epoch 2818/5000 12s 151ms/step - loss: 0.1262 - acc: 0.9862 - val_loss: 0.4482 - val_acc: 0.9059 Epoch 2819/5000 12s 151ms/step - loss: 0.1249 - acc: 0.9865 - val_loss: 0.4531 - val_acc: 0.9058 Epoch 2820/5000 12s 151ms/step - loss: 0.1225 - acc: 0.9876 - val_loss: 0.4457 - val_acc: 0.9053 Epoch 2821/5000 12s 151ms/step - loss: 0.1226 - acc: 0.9871 - val_loss: 0.4470 - val_acc: 0.9061 Epoch 2822/5000 12s 152ms/step - loss: 0.1253 - acc: 0.9856 - val_loss: 0.4415 - val_acc: 0.9091 Epoch 2823/5000 12s 151ms/step - loss: 0.1273 - acc: 0.9849 - val_loss: 0.4557 - val_acc: 0.9026 Epoch 2824/5000 12s 151ms/step - loss: 0.1238 - acc: 0.9873 - val_loss: 0.4350 - val_acc: 0.9062 Epoch 2825/5000 12s 151ms/step - loss: 0.1216 - acc: 0.9875 - val_loss: 0.4519 - val_acc: 0.9055 Epoch 2826/5000 12s 151ms/step - loss: 0.1245 - acc: 0.9867 - val_loss: 0.4502 - val_acc: 0.9055 Epoch 2827/5000 12s 151ms/step - loss: 0.1230 - acc: 0.9872 - val_loss: 0.4619 - val_acc: 0.9049 Epoch 2828/5000 12s 151ms/step - loss: 0.1238 - acc: 0.9869 - val_loss: 0.4563 - val_acc: 0.9032 Epoch 2829/5000 12s 152ms/step - loss: 0.1243 - acc: 0.9863 - val_loss: 0.4650 - val_acc: 0.9017 Epoch 2830/5000 12s 152ms/step - loss: 0.1241 - acc: 0.9869 - val_loss: 0.4628 - val_acc: 0.9023 Epoch 2831/5000 12s 151ms/step - loss: 0.1268 - acc: 0.9857 - val_loss: 0.4599 - val_acc: 0.9058 Epoch 2832/5000 12s 151ms/step - loss: 0.1234 - acc: 0.9871 - val_loss: 0.4551 - val_acc: 0.9061 Epoch 2833/5000 12s 151ms/step - loss: 0.1235 - acc: 0.9865 - val_loss: 0.4608 - val_acc: 0.9055 Epoch 2834/5000 12s 151ms/step - loss: 0.1257 - acc: 0.9866 - val_loss: 0.4463 - val_acc: 0.9076 Epoch 2835/5000 12s 151ms/step - loss: 0.1231 - acc: 0.9869 - val_loss: 0.4648 - val_acc: 0.8993 Epoch 2836/5000 12s 151ms/step - loss: 0.1246 - acc: 0.9864 - val_loss: 0.4587 - val_acc: 0.9045 Epoch 2837/5000 12s 152ms/step - loss: 0.1254 - acc: 0.9865 - val_loss: 0.4570 - val_acc: 0.9009 Epoch 2838/5000 12s 151ms/step - loss: 0.1257 - acc: 0.9861 - val_loss: 0.4606 - val_acc: 0.9026 Epoch 2839/5000 12s 152ms/step - loss: 0.1248 - acc: 0.9864 - val_loss: 0.4673 - val_acc: 0.9034 Epoch 2840/5000 12s 151ms/step - loss: 0.1253 - acc: 0.9862 - val_loss: 0.4600 - val_acc: 0.9042 Epoch 2841/5000 12s 151ms/step - loss: 0.1243 - acc: 0.9866 - val_loss: 0.4696 - val_acc: 0.9013 Epoch 2842/5000 12s 150ms/step - loss: 0.1240 - acc: 0.9871 - val_loss: 0.4504 - val_acc: 0.9052 Epoch 2843/5000 12s 151ms/step - loss: 0.1238 - acc: 0.9865 - val_loss: 0.4590 - val_acc: 0.9025 Epoch 2844/5000 12s 151ms/step - loss: 0.1246 - acc: 0.9866 - val_loss: 0.4587 - val_acc: 0.9003 Epoch 2845/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9865 - val_loss: 0.4593 - val_acc: 0.9022 Epoch 2846/5000 12s 152ms/step - loss: 0.1225 - acc: 0.9876 - val_loss: 0.4584 - val_acc: 0.9064 Epoch 2847/5000 12s 151ms/step - loss: 0.1250 - acc: 0.9866 - val_loss: 0.4614 - val_acc: 0.9063 Epoch 2848/5000 12s 152ms/step - loss: 0.1252 - acc: 0.9864 - val_loss: 0.4774 - val_acc: 0.9039 Epoch 2849/5000 12s 152ms/step - loss: 0.1243 - acc: 0.9868 - val_loss: 0.4544 - val_acc: 0.9066 Epoch 2850/5000 12s 152ms/step - loss: 0.1255 - acc: 0.9861 - val_loss: 0.4497 - val_acc: 0.9040 Epoch 2851/5000 12s 151ms/step - loss: 0.1236 - acc: 0.9867 - val_loss: 0.4512 - val_acc: 0.9018 Epoch 2852/5000 12s 152ms/step - loss: 0.1258 - acc: 0.9860 - val_loss: 0.4568 - val_acc: 0.9042 Epoch 2853/5000 12s 151ms/step - loss: 0.1212 - acc: 0.9871 - val_loss: 0.4575 - val_acc: 0.9030 Epoch 2854/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9865 - val_loss: 0.4592 - val_acc: 0.9024 Epoch 2855/5000 12s 151ms/step - loss: 0.1231 - acc: 0.9869 - val_loss: 0.4464 - val_acc: 0.9079 Epoch 2856/5000 12s 152ms/step - loss: 0.1229 - acc: 0.9872 - val_loss: 0.4571 - val_acc: 0.9039 Epoch 2857/5000 12s 152ms/step - loss: 0.1237 - acc: 0.9871 - val_loss: 0.4527 - val_acc: 0.9056 Epoch 2858/5000 12s 152ms/step - loss: 0.1224 - acc: 0.9872 - val_loss: 0.4403 - val_acc: 0.9081 Epoch 2859/5000 12s 151ms/step - loss: 0.1249 - acc: 0.9859 - val_loss: 0.4666 - val_acc: 0.9017 Epoch 2860/5000 12s 151ms/step - loss: 0.1259 - acc: 0.9859 - val_loss: 0.4420 - val_acc: 0.9056 Epoch 2861/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9865 - val_loss: 0.4547 - val_acc: 0.9039 Epoch 2862/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9868 - val_loss: 0.4583 - val_acc: 0.9038 Epoch 2863/5000 12s 151ms/step - loss: 0.1255 - acc: 0.9856 - val_loss: 0.4665 - val_acc: 0.9044 Epoch 2864/5000 12s 152ms/step - loss: 0.1264 - acc: 0.9862 - val_loss: 0.4568 - val_acc: 0.9049 Epoch 2865/5000 12s 151ms/step - loss: 0.1278 - acc: 0.9852 - val_loss: 0.4730 - val_acc: 0.9007 Epoch 2866/5000 12s 152ms/step - loss: 0.1257 - acc: 0.9861 - val_loss: 0.4602 - val_acc: 0.9011 Epoch 2867/5000 12s 152ms/step - loss: 0.1275 - acc: 0.9862 - val_loss: 0.4459 - val_acc: 0.9055 Epoch 2868/5000 12s 152ms/step - loss: 0.1265 - acc: 0.9858 - val_loss: 0.4441 - val_acc: 0.9048 Epoch 2869/5000 12s 151ms/step - loss: 0.1243 - acc: 0.9874 - val_loss: 0.4566 - val_acc: 0.9034 Epoch 2870/5000 12s 151ms/step - loss: 0.1261 - acc: 0.9864 - val_loss: 0.4653 - val_acc: 0.9012 Epoch 2871/5000 12s 152ms/step - loss: 0.1267 - acc: 0.9860 - val_loss: 0.4621 - val_acc: 0.8996 Epoch 2872/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9863 - val_loss: 0.4517 - val_acc: 0.9050 Epoch 2873/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9867 - val_loss: 0.4478 - val_acc: 0.9058 Epoch 2874/5000 12s 151ms/step - loss: 0.1241 - acc: 0.9865 - val_loss: 0.4507 - val_acc: 0.9058 Epoch 2875/5000 12s 152ms/step - loss: 0.1218 - acc: 0.9879 - val_loss: 0.4455 - val_acc: 0.9055 Epoch 2876/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9859 - val_loss: 0.4639 - val_acc: 0.9012 Epoch 2877/5000 12s 151ms/step - loss: 0.1217 - acc: 0.9872 - val_loss: 0.4713 - val_acc: 0.9009 Epoch 2878/5000 12s 152ms/step - loss: 0.1227 - acc: 0.9877 - val_loss: 0.4590 - val_acc: 0.9031 Epoch 2879/5000 12s 150ms/step - loss: 0.1247 - acc: 0.9863 - val_loss: 0.4390 - val_acc: 0.9054 Epoch 2880/5000 12s 152ms/step - loss: 0.1251 - acc: 0.9865 - val_loss: 0.4582 - val_acc: 0.9025 Epoch 2881/5000 12s 151ms/step - loss: 0.1261 - acc: 0.9859 - val_loss: 0.4480 - val_acc: 0.9053 Epoch 2882/5000 12s 152ms/step - loss: 0.1228 - acc: 0.9869 - val_loss: 0.4430 - val_acc: 0.9089 Epoch 2883/5000 12s 151ms/step - loss: 0.1215 - acc: 0.9869 - val_loss: 0.4476 - val_acc: 0.9061 Epoch 2884/5000 12s 151ms/step - loss: 0.1272 - acc: 0.9856 - val_loss: 0.4586 - val_acc: 0.9062 Epoch 2885/5000 12s 151ms/step - loss: 0.1243 - acc: 0.9861 - val_loss: 0.4557 - val_acc: 0.9021 Epoch 2886/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9858 - val_loss: 0.4631 - val_acc: 0.9041 Epoch 2887/5000 12s 152ms/step - loss: 0.1234 - acc: 0.9870 - val_loss: 0.4378 - val_acc: 0.9074 Epoch 2888/5000 12s 152ms/step - loss: 0.1245 - acc: 0.9865 - val_loss: 0.4415 - val_acc: 0.9072 Epoch 2889/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9865 - val_loss: 0.4535 - val_acc: 0.9072 Epoch 2890/5000 12s 151ms/step - loss: 0.1218 - acc: 0.9869 - val_loss: 0.4449 - val_acc: 0.9073 Epoch 2891/5000 12s 152ms/step - loss: 0.1268 - acc: 0.9852 - val_loss: 0.4485 - val_acc: 0.9015 Epoch 2892/5000 12s 152ms/step - loss: 0.1248 - acc: 0.9865 - val_loss: 0.4578 - val_acc: 0.9034 Epoch 2893/5000 12s 151ms/step - loss: 0.1236 - acc: 0.9870 - val_loss: 0.4452 - val_acc: 0.9067 Epoch 2894/5000 12s 151ms/step - loss: 0.1251 - acc: 0.9866 - val_loss: 0.4537 - val_acc: 0.9031 Epoch 2895/5000 12s 151ms/step - loss: 0.1268 - acc: 0.9859 - val_loss: 0.4650 - val_acc: 0.9049 Epoch 2896/5000 12s 151ms/step - loss: 0.1245 - acc: 0.9864 - val_loss: 0.4558 - val_acc: 0.9049 Epoch 2897/5000 12s 152ms/step - loss: 0.1225 - acc: 0.9867 - val_loss: 0.4567 - val_acc: 0.9062 Epoch 2898/5000 12s 151ms/step - loss: 0.1227 - acc: 0.9873 - val_loss: 0.4518 - val_acc: 0.9032 Epoch 2899/5000 12s 151ms/step - loss: 0.1224 - acc: 0.9877 - val_loss: 0.4370 - val_acc: 0.9065 Epoch 2900/5000 12s 151ms/step - loss: 0.1232 - acc: 0.9870 - val_loss: 0.4514 - val_acc: 0.9074 Epoch 2901/5000 12s 151ms/step - loss: 0.1230 - acc: 0.9867 - val_loss: 0.4497 - val_acc: 0.9035 Epoch 2902/5000 12s 152ms/step - loss: 0.1242 - acc: 0.9870 - val_loss: 0.4468 - val_acc: 0.9046 Epoch 2903/5000 12s 151ms/step - loss: 0.1241 - acc: 0.9866 - val_loss: 0.4631 - val_acc: 0.9030 Epoch 2904/5000 12s 152ms/step - loss: 0.1232 - acc: 0.9871 - val_loss: 0.4451 - val_acc: 0.9057 Epoch 2905/5000 12s 152ms/step - loss: 0.1217 - acc: 0.9869 - val_loss: 0.4466 - val_acc: 0.9079 Epoch 2906/5000 12s 150ms/step - loss: 0.1249 - acc: 0.9861 - val_loss: 0.4484 - val_acc: 0.9049 Epoch 2907/5000 12s 152ms/step - loss: 0.1253 - acc: 0.9865 - val_loss: 0.4467 - val_acc: 0.9079 Epoch 2908/5000 12s 152ms/step - loss: 0.1250 - acc: 0.9866 - val_loss: 0.4523 - val_acc: 0.9040 Epoch 2909/5000 12s 151ms/step - loss: 0.1261 - acc: 0.9855 - val_loss: 0.4477 - val_acc: 0.9075 Epoch 2910/5000 12s 152ms/step - loss: 0.1247 - acc: 0.9866 - val_loss: 0.4358 - val_acc: 0.9090 Epoch 2911/5000 12s 150ms/step - loss: 0.1222 - acc: 0.9876 - val_loss: 0.4622 - val_acc: 0.9016 Epoch 2912/5000 12s 152ms/step - loss: 0.1246 - acc: 0.9863 - val_loss: 0.4487 - val_acc: 0.9069 Epoch 2913/5000 12s 152ms/step - loss: 0.1231 - acc: 0.9873 - val_loss: 0.4466 - val_acc: 0.9051 Epoch 2914/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9866 - val_loss: 0.4554 - val_acc: 0.9051 Epoch 2915/5000 12s 152ms/step - loss: 0.1232 - acc: 0.9872 - val_loss: 0.4558 - val_acc: 0.9063 Epoch 2916/5000 12s 151ms/step - loss: 0.1217 - acc: 0.9870 - val_loss: 0.4533 - val_acc: 0.9055 Epoch 2917/5000 12s 151ms/step - loss: 0.1242 - acc: 0.9866 - val_loss: 0.4584 - val_acc: 0.9017 Epoch 2918/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9871 - val_loss: 0.4594 - val_acc: 0.9025 Epoch 2919/5000 12s 151ms/step - loss: 0.1213 - acc: 0.9876 - val_loss: 0.4582 - val_acc: 0.9034 Epoch 2920/5000 12s 151ms/step - loss: 0.1226 - acc: 0.9872 - val_loss: 0.4494 - val_acc: 0.9047 Epoch 2921/5000 12s 151ms/step - loss: 0.1218 - acc: 0.9872 - val_loss: 0.4576 - val_acc: 0.9066 Epoch 2922/5000 12s 151ms/step - loss: 0.1243 - acc: 0.9863 - val_loss: 0.4597 - val_acc: 0.9055 Epoch 2923/5000 12s 152ms/step - loss: 0.1269 - acc: 0.9852 - val_loss: 0.4563 - val_acc: 0.9054 Epoch 2924/5000 12s 151ms/step - loss: 0.1242 - acc: 0.9865 - val_loss: 0.4465 - val_acc: 0.9038 Epoch 2925/5000 12s 152ms/step - loss: 0.1218 - acc: 0.9872 - val_loss: 0.4531 - val_acc: 0.9027 Epoch 2926/5000 12s 151ms/step - loss: 0.1247 - acc: 0.9863 - val_loss: 0.4551 - val_acc: 0.9046 Epoch 2927/5000 12s 151ms/step - loss: 0.1242 - acc: 0.9866 - val_loss: 0.4591 - val_acc: 0.9019 Epoch 2928/5000 12s 151ms/step - loss: 0.1232 - acc: 0.9867 - val_loss: 0.4550 - val_acc: 0.9037 Epoch 2929/5000 12s 151ms/step - loss: 0.1216 - acc: 0.9879 - val_loss: 0.4495 - val_acc: 0.9054 Epoch 2930/5000 12s 152ms/step - loss: 0.1228 - acc: 0.9871 - val_loss: 0.4478 - val_acc: 0.9043 Epoch 2931/5000 12s 152ms/step - loss: 0.1243 - acc: 0.9859 - val_loss: 0.4601 - val_acc: 0.9025 Epoch 2932/5000 12s 152ms/step - loss: 0.1238 - acc: 0.9865 - val_loss: 0.4561 - val_acc: 0.9050 Epoch 2933/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9873 - val_loss: 0.4625 - val_acc: 0.9024 Epoch 2934/5000 12s 152ms/step - loss: 0.1245 - acc: 0.9859 - val_loss: 0.4558 - val_acc: 0.9025 Epoch 2935/5000 12s 152ms/step - loss: 0.1252 - acc: 0.9862 - val_loss: 0.4648 - val_acc: 0.9030 Epoch 2936/5000 12s 151ms/step - loss: 0.1229 - acc: 0.9872 - val_loss: 0.4648 - val_acc: 0.9024 Epoch 2937/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9867 - val_loss: 0.4577 - val_acc: 0.9015 Epoch 2938/5000 12s 151ms/step - loss: 0.1266 - acc: 0.9854 - val_loss: 0.4721 - val_acc: 0.9011 Epoch 2939/5000 12s 151ms/step - loss: 0.1236 - acc: 0.9868 - val_loss: 0.4562 - val_acc: 0.9050 Epoch 2940/5000 12s 152ms/step - loss: 0.1221 - acc: 0.9868 - val_loss: 0.4583 - val_acc: 0.9046 Epoch 2941/5000 12s 152ms/step - loss: 0.1244 - acc: 0.9863 - val_loss: 0.4601 - val_acc: 0.9039 Epoch 2942/5000 12s 151ms/step - loss: 0.1234 - acc: 0.9873 - val_loss: 0.4710 - val_acc: 0.9021 Epoch 2943/5000 12s 152ms/step - loss: 0.1227 - acc: 0.9869 - val_loss: 0.4574 - val_acc: 0.9057 Epoch 2944/5000 12s 151ms/step - loss: 0.1245 - acc: 0.9862 - val_loss: 0.4752 - val_acc: 0.9023 Epoch 2945/5000 12s 151ms/step - loss: 0.1228 - acc: 0.9866 - val_loss: 0.4870 - val_acc: 0.8995 Epoch 2946/5000 12s 151ms/step - loss: 0.1230 - acc: 0.9870 - val_loss: 0.4680 - val_acc: 0.9030 Epoch 2947/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9870 - val_loss: 0.4631 - val_acc: 0.9043 Epoch 2948/5000 12s 151ms/step - loss: 0.1244 - acc: 0.9863 - val_loss: 0.4531 - val_acc: 0.9046 Epoch 2949/5000 12s 151ms/step - loss: 0.1265 - acc: 0.9857 - val_loss: 0.4524 - val_acc: 0.9047 Epoch 2950/5000 12s 151ms/step - loss: 0.1242 - acc: 0.9870 - val_loss: 0.4612 - val_acc: 0.9021 Epoch 2951/5000 12s 152ms/step - loss: 0.1252 - acc: 0.9861 - val_loss: 0.4594 - val_acc: 0.9056 Epoch 2952/5000 12s 151ms/step - loss: 0.1238 - acc: 0.9865 - val_loss: 0.4678 - val_acc: 0.9039 Epoch 2953/5000 12s 151ms/step - loss: 0.1195 - acc: 0.9883 - val_loss: 0.4595 - val_acc: 0.9059 Epoch 2954/5000 12s 151ms/step - loss: 0.1219 - acc: 0.9870 - val_loss: 0.4533 - val_acc: 0.9056 Epoch 2955/5000 12s 152ms/step - loss: 0.1266 - acc: 0.9854 - val_loss: 0.4631 - val_acc: 0.9023 Epoch 2956/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9856 - val_loss: 0.4567 - val_acc: 0.9050 Epoch 2957/5000 12s 151ms/step - loss: 0.1263 - acc: 0.9862 - val_loss: 0.4424 - val_acc: 0.9104 Epoch 2958/5000 12s 151ms/step - loss: 0.1221 - acc: 0.9871 - val_loss: 0.4534 - val_acc: 0.9059 Epoch 2959/5000 12s 152ms/step - loss: 0.1227 - acc: 0.9869 - val_loss: 0.4523 - val_acc: 0.9097 Epoch 2960/5000 12s 150ms/step - loss: 0.1237 - acc: 0.9874 - val_loss: 0.4554 - val_acc: 0.9057 Epoch 2961/5000 12s 151ms/step - loss: 0.1246 - acc: 0.9860 - val_loss: 0.4488 - val_acc: 0.9077 Epoch 2962/5000 12s 152ms/step - loss: 0.1235 - acc: 0.9872 - val_loss: 0.4559 - val_acc: 0.9021 Epoch 2963/5000 12s 151ms/step - loss: 0.1226 - acc: 0.9873 - val_loss: 0.4650 - val_acc: 0.9019 Epoch 2964/5000 12s 151ms/step - loss: 0.1259 - acc: 0.9858 - val_loss: 0.4653 - val_acc: 0.9009 Epoch 2965/5000 12s 151ms/step - loss: 0.1259 - acc: 0.9861 - val_loss: 0.4566 - val_acc: 0.9026 Epoch 2966/5000 12s 151ms/step - loss: 0.1221 - acc: 0.9873 - val_loss: 0.4626 - val_acc: 0.9038 Epoch 2967/5000 12s 152ms/step - loss: 0.1251 - acc: 0.9861 - val_loss: 0.4591 - val_acc: 0.9049 Epoch 2968/5000 12s 151ms/step - loss: 0.1242 - acc: 0.9861 - val_loss: 0.4526 - val_acc: 0.9073 Epoch 2969/5000 12s 152ms/step - loss: 0.1235 - acc: 0.9865 - val_loss: 0.4467 - val_acc: 0.9064 Epoch 2970/5000 12s 151ms/step - loss: 0.1272 - acc: 0.9854 - val_loss: 0.4561 - val_acc: 0.9058 Epoch 2971/5000 12s 152ms/step - loss: 0.1233 - acc: 0.9869 - val_loss: 0.4655 - val_acc: 0.9031 Epoch 2972/5000 12s 152ms/step - loss: 0.1221 - acc: 0.9871 - val_loss: 0.4414 - val_acc: 0.9078 Epoch 2973/5000 12s 151ms/step - loss: 0.1232 - acc: 0.9867 - val_loss: 0.4539 - val_acc: 0.9062 Epoch 2974/5000 12s 152ms/step - loss: 0.1253 - acc: 0.9860 - val_loss: 0.4650 - val_acc: 0.9040 Epoch 2975/5000 12s 151ms/step - loss: 0.1249 - acc: 0.9865 - val_loss: 0.4454 - val_acc: 0.9089 Epoch 2976/5000 12s 151ms/step - loss: 0.1219 - acc: 0.9878 - val_loss: 0.4514 - val_acc: 0.9044 Epoch 2977/5000 12s 152ms/step - loss: 0.1255 - acc: 0.9853 - val_loss: 0.4585 - val_acc: 0.9056 Epoch 2978/5000 12s 151ms/step - loss: 0.1242 - acc: 0.9862 - val_loss: 0.4536 - val_acc: 0.9058 Epoch 2979/5000 12s 152ms/step - loss: 0.1248 - acc: 0.9864 - val_loss: 0.4638 - val_acc: 0.9048 Epoch 2980/5000 12s 150ms/step - loss: 0.1275 - acc: 0.9854 - val_loss: 0.4498 - val_acc: 0.9050 Epoch 2981/5000 12s 152ms/step - loss: 0.1260 - acc: 0.9856 - val_loss: 0.4647 - val_acc: 0.9033 Epoch 2982/5000 12s 151ms/step - loss: 0.1245 - acc: 0.9865 - val_loss: 0.4649 - val_acc: 0.9033 Epoch 2983/5000 12s 151ms/step - loss: 0.1265 - acc: 0.9857 - val_loss: 0.4429 - val_acc: 0.9103 Epoch 2984/5000 12s 151ms/step - loss: 0.1242 - acc: 0.9866 - val_loss: 0.4585 - val_acc: 0.9023 Epoch 2985/5000 12s 152ms/step - loss: 0.1257 - acc: 0.9858 - val_loss: 0.4490 - val_acc: 0.9038 Epoch 2986/5000 12s 151ms/step - loss: 0.1252 - acc: 0.9863 - val_loss: 0.4498 - val_acc: 0.9043 Epoch 2987/5000 12s 151ms/step - loss: 0.1248 - acc: 0.9864 - val_loss: 0.4459 - val_acc: 0.9058 Epoch 2988/5000 12s 152ms/step - loss: 0.1226 - acc: 0.9868 - val_loss: 0.4559 - val_acc: 0.9032 Epoch 2989/5000 12s 151ms/step - loss: 0.1237 - acc: 0.9868 - val_loss: 0.4560 - val_acc: 0.9051 Epoch 2990/5000 12s 151ms/step - loss: 0.1242 - acc: 0.9870 - val_loss: 0.4648 - val_acc: 0.9033 Epoch 2991/5000 12s 152ms/step - loss: 0.1245 - acc: 0.9863 - val_loss: 0.4604 - val_acc: 0.9018 Epoch 2992/5000 12s 151ms/step - loss: 0.1240 - acc: 0.9865 - val_loss: 0.4575 - val_acc: 0.9036 Epoch 2993/5000 13s 157ms/step - loss: 0.1226 - acc: 0.9872 - val_loss: 0.4626 - val_acc: 0.9028 Epoch 2994/5000 12s 152ms/step - loss: 0.1255 - acc: 0.9860 - val_loss: 0.4777 - val_acc: 0.8998 Epoch 2995/5000 12s 151ms/step - loss: 0.1256 - acc: 0.9860 - val_loss: 0.4574 - val_acc: 0.9023 Epoch 2996/5000 12s 151ms/step - loss: 0.1232 - acc: 0.9866 - val_loss: 0.4663 - val_acc: 0.9024 Epoch 2997/5000 12s 151ms/step - loss: 0.1210 - acc: 0.9881 - val_loss: 0.4663 - val_acc: 0.9046 Epoch 2998/5000 12s 152ms/step - loss: 0.1201 - acc: 0.9876 - val_loss: 0.4492 - val_acc: 0.9065 Epoch 2999/5000 12s 152ms/step - loss: 0.1260 - acc: 0.9861 - val_loss: 0.4677 - val_acc: 0.9031 Epoch 3000/5000 12s 151ms/step - loss: 0.1256 - acc: 0.9861 - val_loss: 0.4517 - val_acc: 0.9044 Epoch 3001/5000 lr changed to 0.0009999999776482583 12s 151ms/step - loss: 0.1226 - acc: 0.9877 - val_loss: 0.4332 - val_acc: 0.9071 Epoch 3002/5000 12s 151ms/step - loss: 0.1123 - acc: 0.9911 - val_loss: 0.4282 - val_acc: 0.9088 Epoch 3003/5000 12s 152ms/step - loss: 0.1072 - acc: 0.9926 - val_loss: 0.4277 - val_acc: 0.9110 Epoch 3004/5000 12s 152ms/step - loss: 0.1051 - acc: 0.9938 - val_loss: 0.4253 - val_acc: 0.9108 Epoch 3005/5000 12s 152ms/step - loss: 0.1041 - acc: 0.9941 - val_loss: 0.4242 - val_acc: 0.9101 Epoch 3006/5000 12s 151ms/step - loss: 0.1021 - acc: 0.9945 - val_loss: 0.4259 - val_acc: 0.9098 Epoch 3007/5000 12s 151ms/step - loss: 0.1034 - acc: 0.9940 - val_loss: 0.4255 - val_acc: 0.9100 Epoch 3008/5000 12s 152ms/step - loss: 0.1018 - acc: 0.9949 - val_loss: 0.4252 - val_acc: 0.9100 Epoch 3009/5000 12s 152ms/step - loss: 0.1029 - acc: 0.9945 - val_loss: 0.4276 - val_acc: 0.9103 Epoch 3010/5000 12s 151ms/step - loss: 0.1018 - acc: 0.9947 - val_loss: 0.4275 - val_acc: 0.9102 Epoch 3011/5000 12s 152ms/step - loss: 0.1004 - acc: 0.9951 - val_loss: 0.4237 - val_acc: 0.9106 Epoch 3012/5000 12s 152ms/step - loss: 0.0996 - acc: 0.9954 - val_loss: 0.4213 - val_acc: 0.9120 Epoch 3013/5000 12s 151ms/step - loss: 0.0997 - acc: 0.9953 - val_loss: 0.4247 - val_acc: 0.9112 Epoch 3014/5000 12s 151ms/step - loss: 0.0998 - acc: 0.9956 - val_loss: 0.4249 - val_acc: 0.9111 Epoch 3015/5000 12s 152ms/step - loss: 0.0999 - acc: 0.9953 - val_loss: 0.4261 - val_acc: 0.9103 Epoch 3016/5000 12s 151ms/step - loss: 0.0984 - acc: 0.9958 - val_loss: 0.4285 - val_acc: 0.9102 Epoch 3017/5000 12s 151ms/step - loss: 0.0999 - acc: 0.9954 - val_loss: 0.4284 - val_acc: 0.9098 Epoch 3018/5000 12s 154ms/step - loss: 0.0997 - acc: 0.9952 - val_loss: 0.4290 - val_acc: 0.9105 Epoch 3019/5000 12s 152ms/step - loss: 0.0992 - acc: 0.9955 - val_loss: 0.4273 - val_acc: 0.9118 Epoch 3020/5000 12s 151ms/step - loss: 0.0988 - acc: 0.9953 - val_loss: 0.4270 - val_acc: 0.9110 Epoch 3021/5000 12s 152ms/step - loss: 0.0988 - acc: 0.9957 - val_loss: 0.4298 - val_acc: 0.9104 Epoch 3022/5000 12s 151ms/step - loss: 0.0984 - acc: 0.9957 - val_loss: 0.4317 - val_acc: 0.9103 Epoch 3023/5000 12s 151ms/step - loss: 0.0976 - acc: 0.9960 - val_loss: 0.4282 - val_acc: 0.9107 Epoch 3024/5000 12s 152ms/step - loss: 0.0984 - acc: 0.9959 - val_loss: 0.4283 - val_acc: 0.9111 Epoch 3025/5000 12s 152ms/step - loss: 0.0969 - acc: 0.9960 - val_loss: 0.4288 - val_acc: 0.9090
过拟合依然严重,还是得继续减小网络。
Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458, Date of Publication: 13 February 2020
https://ieeexplore.ieee.org/d...