续上一篇:
一种动态ReLU(Dynamic ReLU):自适应参数化ReLU(调参记录3)
自适应参数化ReLU是一种动态ReLU(Dynamic ReLU),于2019年5月3日投稿至IEEE Transactions on Industrial Electronics,于2020年1月24日(农历大年初一)录用,于2020年2月13日在IEEE官网公布。
本文在深度残差网络中采用了自适应参数化ReLU,继续测试其在Cifar10上的效果。与上一篇不同的是,这次修改了残差模块里面的结构,原先是两个3×3的卷积层,现在改成了1×1→3×3→1×1的瓶颈式结构,从而层数是加深了,但是参数规模减小了。
其中,自适应参数化ReLU是Parametric ReLU的动态改进版本:
具体Keras代码如下:
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 14 04:17:45 2020 Implemented using TensorFlow 1.0.1 and Keras 2.2.1 Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458, Date of Publication: 13 February 2020 @author: Minghang Zhao """ from __future__ import print_function import keras import numpy as np from keras.datasets import cifar10 from keras.layers import Dense, Conv2D, BatchNormalization, Activation, Minimum from keras.layers import AveragePooling2D, Input, GlobalAveragePooling2D, Concatenate, Reshape from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras import optimizers from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler K.set_learning_phase(1) # The data, split between train and test sets (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_test = x_test-np.mean(x_train) x_train = x_train-np.mean(x_train) print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) # Schedule the learning rate, multiply 0.1 every 200 epoches def scheduler(epoch): if epoch % 200 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.1) print("lr changed to {}".format(lr * 0.1)) return K.get_value(model.optimizer.lr) # An adaptively parametric rectifier linear unit (APReLU) def aprelu(inputs): # get the number of channels channels = inputs.get_shape().as_list()[-1] # get a zero feature map zeros_input = keras.layers.subtract([inputs, inputs]) # get a feature map with only positive features pos_input = Activation('relu')(inputs) # get a feature map with only negative features neg_input = Minimum()([inputs,zeros_input]) # define a network to obtain the scaling coefficients scales_p = GlobalAveragePooling2D()(pos_input) scales_n = GlobalAveragePooling2D()(neg_input) scales = Concatenate()([scales_n, scales_p]) scales = Dense(channels//4, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization()(scales) scales = Activation('relu')(scales) scales = Dense(channels, activation='linear', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(scales) scales = BatchNormalization()(scales) scales = Activation('sigmoid')(scales) scales = Reshape((1,1,channels))(scales) # apply a paramtetric relu neg_part = keras.layers.multiply([scales, neg_input]) return keras.layers.add([pos_input, neg_part]) # Residual Block def residual_block(incoming, nb_blocks, out_channels, downsample=False, downsample_strides=2): residual = incoming in_channels = incoming.get_shape().as_list()[-1] for i in range(nb_blocks): identity = residual if not downsample: downsample_strides = 1 residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels//4, 1, strides=(downsample_strides, downsample_strides), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels//4, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) residual = BatchNormalization()(residual) residual = aprelu(residual) residual = Conv2D(out_channels, 1, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(residual) # Downsampling if downsample_strides > 1: identity = AveragePooling2D(pool_size=(1,1), strides=(2,2))(identity) # Zero_padding to match channels if in_channels != out_channels: zeros_identity = keras.layers.subtract([identity, identity]) identity = keras.layers.concatenate([identity, zeros_identity]) in_channels = out_channels residual = keras.layers.add([residual, identity]) return residual # define and train a model inputs = Input(shape=(32, 32, 3)) net = Conv2D(16, 3, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs) net = residual_block(net, 9, 16, downsample=False) net = residual_block(net, 1, 32, downsample=True) net = residual_block(net, 8, 32, downsample=False) net = residual_block(net, 1, 64, downsample=True) net = residual_block(net, 8, 64, downsample=False) net = BatchNormalization()(net) net = aprelu(net) net = GlobalAveragePooling2D()(net) outputs = Dense(10, activation='softmax', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(net) model = Model(inputs=inputs, outputs=outputs) sgd = optimizers.SGD(lr=0.1, decay=0., momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) # data augmentation datagen = ImageDataGenerator( # randomly rotate images in the range (deg 0 to 180) rotation_range=30, # randomly flip images horizontal_flip=True, # randomly shift images horizontally width_shift_range=0.125, # randomly shift images vertically height_shift_range=0.125) reduce_lr = LearningRateScheduler(scheduler) # fit the model on the batches generated by datagen.flow(). model.fit_generator(datagen.flow(x_train, y_train, batch_size=100), validation_data=(x_test, y_test), epochs=500, verbose=1, callbacks=[reduce_lr], workers=4) # get results K.set_learning_phase(0) DRSN_train_score1 = model.evaluate(x_train, y_train, batch_size=100, verbose=0) print('Train loss:', DRSN_train_score1[0]) print('Train accuracy:', DRSN_train_score1[1]) DRSN_test_score1 = model.evaluate(x_test, y_test, batch_size=100, verbose=0) print('Test loss:', DRSN_test_score1[0]) print('Test accuracy:', DRSN_test_score1[1])
实验结果如下:
Using TensorFlow backend. x_train shape: (50000, 32, 32, 3) 50000 train samples 10000 test samples Epoch 1/500 120s 241ms/step - loss: 2.3085 - acc: 0.3898 - val_loss: 1.9532 - val_acc: 0.5094 Epoch 2/500 77s 154ms/step - loss: 1.8971 - acc: 0.5130 - val_loss: 1.7076 - val_acc: 0.5678 Epoch 3/500 77s 154ms/step - loss: 1.6755 - acc: 0.5682 - val_loss: 1.5036 - val_acc: 0.6182 Epoch 4/500 77s 154ms/step - loss: 1.5174 - acc: 0.6061 - val_loss: 1.3494 - val_acc: 0.6591 Epoch 5/500 77s 154ms/step - loss: 1.4061 - acc: 0.6334 - val_loss: 1.2835 - val_acc: 0.6646 Epoch 6/500 77s 154ms/step - loss: 1.3085 - acc: 0.6570 - val_loss: 1.1890 - val_acc: 0.6935 Epoch 7/500 77s 154ms/step - loss: 1.2315 - acc: 0.6730 - val_loss: 1.1236 - val_acc: 0.7082 Epoch 8/500 77s 154ms/step - loss: 1.1676 - acc: 0.6870 - val_loss: 1.1081 - val_acc: 0.7100 Epoch 9/500 77s 154ms/step - loss: 1.1105 - acc: 0.7017 - val_loss: 0.9947 - val_acc: 0.7442 Epoch 10/500 77s 153ms/step - loss: 1.0784 - acc: 0.7076 - val_loss: 1.0079 - val_acc: 0.7378 Epoch 11/500 77s 154ms/step - loss: 1.0402 - acc: 0.7166 - val_loss: 0.9686 - val_acc: 0.7456 Epoch 12/500 77s 154ms/step - loss: 1.0044 - acc: 0.7279 - val_loss: 0.9421 - val_acc: 0.7506 Epoch 13/500 77s 155ms/step - loss: 0.9791 - acc: 0.7356 - val_loss: 0.9316 - val_acc: 0.7550 Epoch 14/500 77s 154ms/step - loss: 0.9566 - acc: 0.7431 - val_loss: 0.9106 - val_acc: 0.7567 Epoch 15/500 77s 154ms/step - loss: 0.9392 - acc: 0.7477 - val_loss: 0.8879 - val_acc: 0.7676 Epoch 16/500 77s 153ms/step - loss: 0.9217 - acc: 0.7505 - val_loss: 0.8706 - val_acc: 0.7739 Epoch 17/500 77s 154ms/step - loss: 0.9025 - acc: 0.7599 - val_loss: 0.8551 - val_acc: 0.7766 Epoch 18/500 77s 153ms/step - loss: 0.8995 - acc: 0.7572 - val_loss: 0.8515 - val_acc: 0.7750 Epoch 19/500 77s 154ms/step - loss: 0.8803 - acc: 0.7643 - val_loss: 0.8657 - val_acc: 0.7683 Epoch 20/500 77s 154ms/step - loss: 0.8713 - acc: 0.7682 - val_loss: 0.8249 - val_acc: 0.7861 Epoch 21/500 77s 154ms/step - loss: 0.8625 - acc: 0.7710 - val_loss: 0.8161 - val_acc: 0.7896 Epoch 22/500 77s 154ms/step - loss: 0.8532 - acc: 0.7746 - val_loss: 0.8149 - val_acc: 0.7865 Epoch 23/500 77s 154ms/step - loss: 0.8529 - acc: 0.7745 - val_loss: 0.8192 - val_acc: 0.7913 Epoch 24/500 77s 153ms/step - loss: 0.8398 - acc: 0.7789 - val_loss: 0.7975 - val_acc: 0.7978 Epoch 25/500 77s 153ms/step - loss: 0.8343 - acc: 0.7811 - val_loss: 0.8067 - val_acc: 0.7909 Epoch 26/500 77s 154ms/step - loss: 0.8250 - acc: 0.7831 - val_loss: 0.7864 - val_acc: 0.8016 Epoch 27/500 77s 154ms/step - loss: 0.8227 - acc: 0.7835 - val_loss: 0.7928 - val_acc: 0.8000 Epoch 28/500 77s 154ms/step - loss: 0.8189 - acc: 0.7867 - val_loss: 0.7823 - val_acc: 0.8053 Epoch 29/500 77s 155ms/step - loss: 0.8156 - acc: 0.7869 - val_loss: 0.7825 - val_acc: 0.8014 Epoch 30/500 77s 154ms/step - loss: 0.8081 - acc: 0.7916 - val_loss: 0.7704 - val_acc: 0.8074 Epoch 31/500 77s 154ms/step - loss: 0.8014 - acc: 0.7933 - val_loss: 0.7806 - val_acc: 0.8007 Epoch 32/500 77s 153ms/step - loss: 0.7975 - acc: 0.7931 - val_loss: 0.7764 - val_acc: 0.8056 Epoch 33/500 77s 154ms/step - loss: 0.7908 - acc: 0.7942 - val_loss: 0.7652 - val_acc: 0.8103 Epoch 34/500 77s 154ms/step - loss: 0.7939 - acc: 0.7966 - val_loss: 0.7660 - val_acc: 0.8078 Epoch 35/500 77s 154ms/step - loss: 0.7882 - acc: 0.7990 - val_loss: 0.7669 - val_acc: 0.8069 Epoch 36/500 77s 155ms/step - loss: 0.7811 - acc: 0.7998 - val_loss: 0.7603 - val_acc: 0.8101 Epoch 37/500 77s 154ms/step - loss: 0.7745 - acc: 0.8037 - val_loss: 0.7537 - val_acc: 0.8182 Epoch 38/500 77s 155ms/step - loss: 0.7791 - acc: 0.8000 - val_loss: 0.7441 - val_acc: 0.8194 Epoch 39/500 77s 153ms/step - loss: 0.7722 - acc: 0.8025 - val_loss: 0.7907 - val_acc: 0.8011 Epoch 40/500 77s 154ms/step - loss: 0.7683 - acc: 0.8047 - val_loss: 0.7622 - val_acc: 0.8128 Epoch 41/500 77s 154ms/step - loss: 0.7689 - acc: 0.8057 - val_loss: 0.7767 - val_acc: 0.8015 Epoch 42/500 77s 154ms/step - loss: 0.7618 - acc: 0.8069 - val_loss: 0.7487 - val_acc: 0.8159 Epoch 43/500 77s 154ms/step - loss: 0.7587 - acc: 0.8097 - val_loss: 0.7490 - val_acc: 0.8192 Epoch 44/500 77s 154ms/step - loss: 0.7593 - acc: 0.8096 - val_loss: 0.7403 - val_acc: 0.8170 Epoch 45/500 77s 154ms/step - loss: 0.7558 - acc: 0.8116 - val_loss: 0.7475 - val_acc: 0.8193 Epoch 46/500 77s 154ms/step - loss: 0.7565 - acc: 0.8121 - val_loss: 0.7392 - val_acc: 0.8189 Epoch 47/500 77s 153ms/step - loss: 0.7480 - acc: 0.8127 - val_loss: 0.7472 - val_acc: 0.8176 Epoch 48/500 77s 154ms/step - loss: 0.7505 - acc: 0.8134 - val_loss: 0.7340 - val_acc: 0.8235 Epoch 49/500 77s 153ms/step - loss: 0.7404 - acc: 0.8166 - val_loss: 0.7199 - val_acc: 0.8267 Epoch 50/500 77s 155ms/step - loss: 0.7421 - acc: 0.8150 - val_loss: 0.7194 - val_acc: 0.8267 Epoch 51/500 77s 153ms/step - loss: 0.7408 - acc: 0.8172 - val_loss: 0.7321 - val_acc: 0.8207 Epoch 52/500 77s 154ms/step - loss: 0.7364 - acc: 0.8177 - val_loss: 0.7517 - val_acc: 0.8151 Epoch 53/500 77s 154ms/step - loss: 0.7362 - acc: 0.8194 - val_loss: 0.7171 - val_acc: 0.8279 Epoch 54/500 77s 153ms/step - loss: 0.7341 - acc: 0.8193 - val_loss: 0.7596 - val_acc: 0.8130 Epoch 55/500 77s 154ms/step - loss: 0.7354 - acc: 0.8193 - val_loss: 0.7331 - val_acc: 0.8215 Epoch 56/500 77s 153ms/step - loss: 0.7297 - acc: 0.8224 - val_loss: 0.7168 - val_acc: 0.8315 Epoch 57/500 77s 154ms/step - loss: 0.7287 - acc: 0.8206 - val_loss: 0.7042 - val_acc: 0.8354 Epoch 58/500 77s 154ms/step - loss: 0.7267 - acc: 0.8237 - val_loss: 0.7507 - val_acc: 0.8162 Epoch 59/500 77s 154ms/step - loss: 0.7246 - acc: 0.8241 - val_loss: 0.7273 - val_acc: 0.8239 Epoch 60/500 77s 154ms/step - loss: 0.7220 - acc: 0.8242 - val_loss: 0.7350 - val_acc: 0.8221 Epoch 61/500 77s 154ms/step - loss: 0.7167 - acc: 0.8258 - val_loss: 0.7064 - val_acc: 0.8318 Epoch 62/500 77s 154ms/step - loss: 0.7158 - acc: 0.8277 - val_loss: 0.6990 - val_acc: 0.8348 Epoch 63/500 77s 153ms/step - loss: 0.7177 - acc: 0.8259 - val_loss: 0.6947 - val_acc: 0.8388 Epoch 64/500 77s 153ms/step - loss: 0.7143 - acc: 0.8265 - val_loss: 0.7235 - val_acc: 0.8283 Epoch 65/500 77s 154ms/step - loss: 0.7167 - acc: 0.8254 - val_loss: 0.7047 - val_acc: 0.8342 Epoch 66/500 77s 153ms/step - loss: 0.7151 - acc: 0.8277 - val_loss: 0.6992 - val_acc: 0.8320 Epoch 67/500 77s 154ms/step - loss: 0.7085 - acc: 0.8278 - val_loss: 0.7052 - val_acc: 0.8334 Epoch 68/500 77s 154ms/step - loss: 0.7053 - acc: 0.8295 - val_loss: 0.6973 - val_acc: 0.8396 Epoch 69/500 77s 154ms/step - loss: 0.7057 - acc: 0.8291 - val_loss: 0.7047 - val_acc: 0.8371 Epoch 70/500 77s 154ms/step - loss: 0.6973 - acc: 0.8343 - val_loss: 0.6958 - val_acc: 0.8375 Epoch 71/500 77s 154ms/step - loss: 0.7018 - acc: 0.8310 - val_loss: 0.6887 - val_acc: 0.8405 Epoch 72/500 77s 154ms/step - loss: 0.7030 - acc: 0.8333 - val_loss: 0.7100 - val_acc: 0.8301 Epoch 73/500 77s 154ms/step - loss: 0.6993 - acc: 0.8326 - val_loss: 0.7093 - val_acc: 0.8332 Epoch 74/500 77s 154ms/step - loss: 0.6995 - acc: 0.8319 - val_loss: 0.6969 - val_acc: 0.8350 Epoch 75/500 77s 154ms/step - loss: 0.6941 - acc: 0.8346 - val_loss: 0.6762 - val_acc: 0.8436 Epoch 76/500 77s 154ms/step - loss: 0.6976 - acc: 0.8329 - val_loss: 0.7143 - val_acc: 0.8304 Epoch 77/500 77s 154ms/step - loss: 0.6965 - acc: 0.8335 - val_loss: 0.6836 - val_acc: 0.8411 Epoch 78/500 77s 154ms/step - loss: 0.6950 - acc: 0.8327 - val_loss: 0.6773 - val_acc: 0.8439 Epoch 79/500 77s 154ms/step - loss: 0.6961 - acc: 0.8328 - val_loss: 0.6982 - val_acc: 0.8375 Epoch 80/500 77s 154ms/step - loss: 0.6882 - acc: 0.8368 - val_loss: 0.6908 - val_acc: 0.8396 Epoch 81/500 77s 153ms/step - loss: 0.6935 - acc: 0.8363 - val_loss: 0.6779 - val_acc: 0.8439 Epoch 82/500 77s 153ms/step - loss: 0.6927 - acc: 0.8354 - val_loss: 0.6916 - val_acc: 0.8419 Epoch 83/500 77s 154ms/step - loss: 0.6884 - acc: 0.8391 - val_loss: 0.6962 - val_acc: 0.8402 Epoch 84/500 77s 154ms/step - loss: 0.6887 - acc: 0.8379 - val_loss: 0.6850 - val_acc: 0.8401 Epoch 85/500 77s 154ms/step - loss: 0.6843 - acc: 0.8384 - val_loss: 0.6836 - val_acc: 0.8411 Epoch 86/500 77s 154ms/step - loss: 0.6855 - acc: 0.8383 - val_loss: 0.6807 - val_acc: 0.8445 Epoch 87/500 77s 153ms/step - loss: 0.6829 - acc: 0.8387 - val_loss: 0.6820 - val_acc: 0.8401 Epoch 88/500 77s 153ms/step - loss: 0.6790 - acc: 0.8392 - val_loss: 0.6677 - val_acc: 0.8467 Epoch 89/500 77s 154ms/step - loss: 0.6774 - acc: 0.8402 - val_loss: 0.6831 - val_acc: 0.8440 Epoch 90/500 77s 154ms/step - loss: 0.6812 - acc: 0.8382 - val_loss: 0.6896 - val_acc: 0.8386 Epoch 91/500 77s 153ms/step - loss: 0.6746 - acc: 0.8427 - val_loss: 0.6830 - val_acc: 0.8411 Epoch 92/500 77s 154ms/step - loss: 0.6778 - acc: 0.8405 - val_loss: 0.6687 - val_acc: 0.8468 Epoch 93/500 77s 154ms/step - loss: 0.6731 - acc: 0.8431 - val_loss: 0.6864 - val_acc: 0.8394 Epoch 94/500 77s 154ms/step - loss: 0.6788 - acc: 0.8392 - val_loss: 0.6786 - val_acc: 0.8463 Epoch 95/500 77s 154ms/step - loss: 0.6753 - acc: 0.8423 - val_loss: 0.6808 - val_acc: 0.8412 Epoch 96/500 77s 154ms/step - loss: 0.6690 - acc: 0.8429 - val_loss: 0.6927 - val_acc: 0.8391 Epoch 97/500 77s 154ms/step - loss: 0.6753 - acc: 0.8423 - val_loss: 0.6716 - val_acc: 0.8441 Epoch 98/500 77s 153ms/step - loss: 0.6699 - acc: 0.8422 - val_loss: 0.6747 - val_acc: 0.8440 Epoch 99/500 76s 152ms/step - loss: 0.6688 - acc: 0.8433 - val_loss: 0.6736 - val_acc: 0.8437 Epoch 100/500 76s 152ms/step - loss: 0.6634 - acc: 0.8457 - val_loss: 0.6707 - val_acc: 0.8503 Epoch 101/500 76s 152ms/step - loss: 0.6740 - acc: 0.8415 - val_loss: 0.6442 - val_acc: 0.8537 Epoch 102/500 76s 152ms/step - loss: 0.6675 - acc: 0.8446 - val_loss: 0.6883 - val_acc: 0.8409 Epoch 103/500 76s 152ms/step - loss: 0.6691 - acc: 0.8440 - val_loss: 0.6699 - val_acc: 0.8462 Epoch 104/500 76s 152ms/step - loss: 0.6693 - acc: 0.8440 - val_loss: 0.6707 - val_acc: 0.8458 Epoch 105/500 76s 152ms/step - loss: 0.6675 - acc: 0.8449 - val_loss: 0.6566 - val_acc: 0.8498 Epoch 106/500 76s 152ms/step - loss: 0.6672 - acc: 0.8451 - val_loss: 0.6699 - val_acc: 0.8458 Epoch 107/500 76s 152ms/step - loss: 0.6633 - acc: 0.8457 - val_loss: 0.6869 - val_acc: 0.8418 Epoch 108/500 76s 153ms/step - loss: 0.6596 - acc: 0.8488 - val_loss: 0.6673 - val_acc: 0.8478 Epoch 109/500 76s 152ms/step - loss: 0.6624 - acc: 0.8461 - val_loss: 0.6827 - val_acc: 0.8412 Epoch 110/500 76s 152ms/step - loss: 0.6635 - acc: 0.8460 - val_loss: 0.6767 - val_acc: 0.8430 Epoch 111/500 76s 152ms/step - loss: 0.6697 - acc: 0.8428 - val_loss: 0.6469 - val_acc: 0.8534 Epoch 112/500 76s 151ms/step - loss: 0.6627 - acc: 0.8462 - val_loss: 0.6411 - val_acc: 0.8577 Epoch 113/500 76s 152ms/step - loss: 0.6569 - acc: 0.8489 - val_loss: 0.6673 - val_acc: 0.8461 Epoch 114/500 76s 152ms/step - loss: 0.6587 - acc: 0.8473 - val_loss: 0.6665 - val_acc: 0.8496 Epoch 115/500 76s 153ms/step - loss: 0.6560 - acc: 0.8479 - val_loss: 0.6657 - val_acc: 0.8488 Epoch 116/500 76s 152ms/step - loss: 0.6618 - acc: 0.8453 - val_loss: 0.6782 - val_acc: 0.8442 Epoch 117/500 76s 152ms/step - loss: 0.6562 - acc: 0.8485 - val_loss: 0.6739 - val_acc: 0.8462 Epoch 118/500 76s 152ms/step - loss: 0.6620 - acc: 0.8462 - val_loss: 0.6819 - val_acc: 0.8442 Epoch 119/500 76s 152ms/step - loss: 0.6565 - acc: 0.8486 - val_loss: 0.6531 - val_acc: 0.8522 Epoch 120/500 76s 152ms/step - loss: 0.6540 - acc: 0.8496 - val_loss: 0.6637 - val_acc: 0.8491 Epoch 121/500 76s 151ms/step - loss: 0.6567 - acc: 0.8478 - val_loss: 0.6507 - val_acc: 0.8541 Epoch 122/500 11497s 23s/step - loss: 0.6484 - acc: 0.8514 - val_loss: 0.6679 - val_acc: 0.8465 Epoch 123/500 76s 152ms/step - loss: 0.6552 - acc: 0.8494 - val_loss: 0.6700 - val_acc: 0.8468 Epoch 124/500 76s 152ms/step - loss: 0.6600 - acc: 0.8483 - val_loss: 0.6685 - val_acc: 0.8459 Epoch 125/500 77s 153ms/step - loss: 0.6523 - acc: 0.8499 - val_loss: 0.6754 - val_acc: 0.8435 Epoch 126/500 76s 152ms/step - loss: 0.6493 - acc: 0.8512 - val_loss: 0.6487 - val_acc: 0.8515 Epoch 127/500 76s 153ms/step - loss: 0.6507 - acc: 0.8513 - val_loss: 0.6703 - val_acc: 0.8469 Epoch 128/500 77s 153ms/step - loss: 0.6552 - acc: 0.8484 - val_loss: 0.6527 - val_acc: 0.8506 Epoch 129/500 76s 153ms/step - loss: 0.6500 - acc: 0.8507 - val_loss: 0.6682 - val_acc: 0.8449 Epoch 130/500 77s 153ms/step - loss: 0.6534 - acc: 0.8480 - val_loss: 0.6600 - val_acc: 0.8496 Epoch 131/500 77s 154ms/step - loss: 0.6524 - acc: 0.8507 - val_loss: 0.6506 - val_acc: 0.8505 Epoch 132/500 76s 152ms/step - loss: 0.6489 - acc: 0.8507 - val_loss: 0.6674 - val_acc: 0.8452 Epoch 133/500 76s 152ms/step - loss: 0.6499 - acc: 0.8493 - val_loss: 0.6742 - val_acc: 0.8425 Epoch 134/500 76s 153ms/step - loss: 0.6457 - acc: 0.8519 - val_loss: 0.6522 - val_acc: 0.8516 Epoch 135/500 76s 152ms/step - loss: 0.6458 - acc: 0.8532 - val_loss: 0.6407 - val_acc: 0.8539 Epoch 136/500 76s 152ms/step - loss: 0.6478 - acc: 0.8512 - val_loss: 0.6575 - val_acc: 0.8492 Epoch 137/500 76s 151ms/step - loss: 0.6488 - acc: 0.8508 - val_loss: 0.6673 - val_acc: 0.8456 Epoch 138/500 76s 152ms/step - loss: 0.6476 - acc: 0.8524 - val_loss: 0.6545 - val_acc: 0.8523 Epoch 139/500 76s 152ms/step - loss: 0.6517 - acc: 0.8507 - val_loss: 0.6555 - val_acc: 0.8491 Epoch 140/500 76s 152ms/step - loss: 0.6456 - acc: 0.8531 - val_loss: 0.6658 - val_acc: 0.8460 Epoch 141/500 76s 152ms/step - loss: 0.6374 - acc: 0.8545 - val_loss: 0.6624 - val_acc: 0.8463 Epoch 142/500 76s 152ms/step - loss: 0.6437 - acc: 0.8536 - val_loss: 0.6469 - val_acc: 0.8533 Epoch 143/500 76s 152ms/step - loss: 0.6424 - acc: 0.8520 - val_loss: 0.6703 - val_acc: 0.8469 Epoch 144/500 76s 152ms/step - loss: 0.6451 - acc: 0.8515 - val_loss: 0.6561 - val_acc: 0.8507 Epoch 145/500 76s 152ms/step - loss: 0.6472 - acc: 0.8526 - val_loss: 0.6473 - val_acc: 0.8531 Epoch 146/500 76s 153ms/step - loss: 0.6491 - acc: 0.8518 - val_loss: 0.6320 - val_acc: 0.8589 Epoch 147/500 76s 152ms/step - loss: 0.6441 - acc: 0.8526 - val_loss: 0.6574 - val_acc: 0.8489 Epoch 148/500 76s 153ms/step - loss: 0.6453 - acc: 0.8537 - val_loss: 0.6722 - val_acc: 0.8487 Epoch 149/500 76s 153ms/step - loss: 0.6403 - acc: 0.8539 - val_loss: 0.6543 - val_acc: 0.8572 Epoch 150/500 76s 153ms/step - loss: 0.6441 - acc: 0.8541 - val_loss: 0.6431 - val_acc: 0.8557 Epoch 151/500 76s 152ms/step - loss: 0.6407 - acc: 0.8538 - val_loss: 0.6498 - val_acc: 0.8531 Epoch 152/500 76s 153ms/step - loss: 0.6399 - acc: 0.8538 - val_loss: 0.6524 - val_acc: 0.8497 Epoch 153/500 76s 152ms/step - loss: 0.6410 - acc: 0.8544 - val_loss: 0.6563 - val_acc: 0.8512 Epoch 154/500 77s 154ms/step - loss: 0.6456 - acc: 0.8519 - val_loss: 0.6538 - val_acc: 0.8516 Epoch 155/500 76s 152ms/step - loss: 0.6401 - acc: 0.8558 - val_loss: 0.6553 - val_acc: 0.8501 Epoch 156/500 76s 152ms/step - loss: 0.6405 - acc: 0.8544 - val_loss: 0.6576 - val_acc: 0.8497 Epoch 157/500 76s 153ms/step - loss: 0.6401 - acc: 0.8543 - val_loss: 0.6637 - val_acc: 0.8479 Epoch 158/500 76s 152ms/step - loss: 0.6401 - acc: 0.8553 - val_loss: 0.6510 - val_acc: 0.8554 Epoch 159/500 76s 152ms/step - loss: 0.6423 - acc: 0.8539 - val_loss: 0.6451 - val_acc: 0.8572 Epoch 160/500 76s 153ms/step - loss: 0.6376 - acc: 0.8538 - val_loss: 0.6690 - val_acc: 0.8443 Epoch 161/500 76s 152ms/step - loss: 0.6383 - acc: 0.8558 - val_loss: 0.6621 - val_acc: 0.8492 Epoch 162/500 76s 152ms/step - loss: 0.6416 - acc: 0.8546 - val_loss: 0.6488 - val_acc: 0.8557 Epoch 163/500 76s 153ms/step - loss: 0.6386 - acc: 0.8549 - val_loss: 0.6317 - val_acc: 0.8617 Epoch 164/500 76s 152ms/step - loss: 0.6391 - acc: 0.8552 - val_loss: 0.6382 - val_acc: 0.8588 Epoch 165/500 76s 153ms/step - loss: 0.6403 - acc: 0.8549 - val_loss: 0.6447 - val_acc: 0.8544 Epoch 166/500 76s 153ms/step - loss: 0.6400 - acc: 0.8573 - val_loss: 0.6600 - val_acc: 0.8483 Epoch 167/500 76s 152ms/step - loss: 0.6347 - acc: 0.8560 - val_loss: 0.6413 - val_acc: 0.8535 Epoch 168/500 76s 152ms/step - loss: 0.6368 - acc: 0.8557 - val_loss: 0.6468 - val_acc: 0.8515 Epoch 169/500 76s 152ms/step - loss: 0.6349 - acc: 0.8563 - val_loss: 0.6686 - val_acc: 0.8480 Epoch 170/500 76s 152ms/step - loss: 0.6369 - acc: 0.8557 - val_loss: 0.6449 - val_acc: 0.8560 Epoch 171/500 76s 152ms/step - loss: 0.6362 - acc: 0.8563 - val_loss: 0.6538 - val_acc: 0.8521 Epoch 172/500 76s 152ms/step - loss: 0.6321 - acc: 0.8593 - val_loss: 0.6543 - val_acc: 0.8522 Epoch 173/500 76s 152ms/step - loss: 0.6356 - acc: 0.8569 - val_loss: 0.6445 - val_acc: 0.8512 Epoch 174/500 77s 154ms/step - loss: 0.6325 - acc: 0.8579 - val_loss: 0.6493 - val_acc: 0.8551 Epoch 175/500 76s 153ms/step - loss: 0.6330 - acc: 0.8563 - val_loss: 0.6438 - val_acc: 0.8572 Epoch 176/500 76s 152ms/step - loss: 0.6361 - acc: 0.8547 - val_loss: 0.6432 - val_acc: 0.8532 Epoch 177/500 76s 152ms/step - loss: 0.6322 - acc: 0.8577 - val_loss: 0.6377 - val_acc: 0.8582 Epoch 178/500 76s 152ms/step - loss: 0.6476 - acc: 0.8526 - val_loss: 0.6434 - val_acc: 0.8561 Epoch 179/500 76s 152ms/step - loss: 0.6403 - acc: 0.8540 - val_loss: 0.6569 - val_acc: 0.8529 Epoch 180/500 76s 153ms/step - loss: 0.6362 - acc: 0.8583 - val_loss: 0.6436 - val_acc: 0.8543 Epoch 181/500 76s 153ms/step - loss: 0.6300 - acc: 0.8584 - val_loss: 0.6335 - val_acc: 0.8593 Epoch 182/500 76s 152ms/step - loss: 0.6360 - acc: 0.8565 - val_loss: 0.6460 - val_acc: 0.8554 Epoch 183/500 76s 152ms/step - loss: 0.6344 - acc: 0.8567 - val_loss: 0.6584 - val_acc: 0.8471 Epoch 184/500 76s 152ms/step - loss: 0.6354 - acc: 0.8553 - val_loss: 0.6409 - val_acc: 0.8561 Epoch 185/500 76s 153ms/step - loss: 0.6327 - acc: 0.8578 - val_loss: 0.6422 - val_acc: 0.8590 Epoch 186/500 76s 151ms/step - loss: 0.6338 - acc: 0.8570 - val_loss: 0.6434 - val_acc: 0.8542 Epoch 187/500 76s 152ms/step - loss: 0.6283 - acc: 0.8595 - val_loss: 0.6485 - val_acc: 0.8521 Epoch 188/500 76s 152ms/step - loss: 0.6320 - acc: 0.8565 - val_loss: 0.6415 - val_acc: 0.8560 Epoch 189/500 76s 152ms/step - loss: 0.6330 - acc: 0.8579 - val_loss: 0.6354 - val_acc: 0.8569 Epoch 190/500 76s 152ms/step - loss: 0.6260 - acc: 0.8586 - val_loss: 0.6583 - val_acc: 0.8527 Epoch 191/500 76s 153ms/step - loss: 0.6341 - acc: 0.8577 - val_loss: 0.6381 - val_acc: 0.8549 Epoch 192/500 77s 154ms/step - loss: 0.6313 - acc: 0.8585 - val_loss: 0.6428 - val_acc: 0.8584 Epoch 193/500 77s 154ms/step - loss: 0.6297 - acc: 0.8596 - val_loss: 0.6445 - val_acc: 0.8595 Epoch 194/500 77s 153ms/step - loss: 0.6316 - acc: 0.8579 - val_loss: 0.6446 - val_acc: 0.8578 Epoch 195/500 77s 154ms/step - loss: 0.6313 - acc: 0.8571 - val_loss: 0.6604 - val_acc: 0.8468 Epoch 196/500 77s 154ms/step - loss: 0.6287 - acc: 0.8586 - val_loss: 0.6461 - val_acc: 0.8552 Epoch 197/500 77s 154ms/step - loss: 0.6264 - acc: 0.8597 - val_loss: 0.6453 - val_acc: 0.8543 Epoch 198/500 77s 154ms/step - loss: 0.6274 - acc: 0.8607 - val_loss: 0.6451 - val_acc: 0.8571 Epoch 199/500 77s 153ms/step - loss: 0.6314 - acc: 0.8591 - val_loss: 0.6473 - val_acc: 0.8520 Epoch 200/500 77s 154ms/step - loss: 0.6247 - acc: 0.8619 - val_loss: 0.6640 - val_acc: 0.8488 Epoch 201/500 lr changed to 0.010000000149011612 77s 154ms/step - loss: 0.5292 - acc: 0.8930 - val_loss: 0.5489 - val_acc: 0.8836 Epoch 202/500 77s 154ms/step - loss: 0.4786 - acc: 0.9093 - val_loss: 0.5324 - val_acc: 0.8892 Epoch 203/500 77s 154ms/step - loss: 0.4603 - acc: 0.9141 - val_loss: 0.5308 - val_acc: 0.8910 Epoch 204/500 77s 153ms/step - loss: 0.4479 - acc: 0.9178 - val_loss: 0.5217 - val_acc: 0.8902 Epoch 205/500 77s 154ms/step - loss: 0.4347 - acc: 0.9205 - val_loss: 0.5181 - val_acc: 0.8903 Epoch 206/500 77s 154ms/step - loss: 0.4242 - acc: 0.9231 - val_loss: 0.5082 - val_acc: 0.8923 Epoch 207/500 77s 154ms/step - loss: 0.4196 - acc: 0.9232 - val_loss: 0.5086 - val_acc: 0.8921 Epoch 208/500 77s 154ms/step - loss: 0.4097 - acc: 0.9255 - val_loss: 0.5067 - val_acc: 0.8932 Epoch 209/500 77s 154ms/step - loss: 0.4044 - acc: 0.9268 - val_loss: 0.5012 - val_acc: 0.8936 Epoch 210/500 77s 154ms/step - loss: 0.3980 - acc: 0.9289 - val_loss: 0.5063 - val_acc: 0.8919 Epoch 211/500 77s 154ms/step - loss: 0.3907 - acc: 0.9294 - val_loss: 0.4907 - val_acc: 0.8964 Epoch 212/500 77s 154ms/step - loss: 0.3868 - acc: 0.9292 - val_loss: 0.4941 - val_acc: 0.8922 Epoch 213/500 77s 155ms/step - loss: 0.3798 - acc: 0.9311 - val_loss: 0.4935 - val_acc: 0.8914 Epoch 214/500 77s 154ms/step - loss: 0.3730 - acc: 0.9321 - val_loss: 0.4874 - val_acc: 0.8955 Epoch 215/500 77s 154ms/step - loss: 0.3713 - acc: 0.9308 - val_loss: 0.4870 - val_acc: 0.8931 Epoch 216/500 77s 154ms/step - loss: 0.3670 - acc: 0.9323 - val_loss: 0.4930 - val_acc: 0.8910 Epoch 217/500 76s 153ms/step - loss: 0.3643 - acc: 0.9325 - val_loss: 0.4798 - val_acc: 0.8938 Epoch 218/500 76s 152ms/step - loss: 0.3580 - acc: 0.9335 - val_loss: 0.4817 - val_acc: 0.8948 Epoch 219/500 76s 152ms/step - loss: 0.3548 - acc: 0.9329 - val_loss: 0.4749 - val_acc: 0.8918 Epoch 220/500 76s 152ms/step - loss: 0.3541 - acc: 0.9334 - val_loss: 0.4663 - val_acc: 0.8966 Epoch 221/500 76s 153ms/step - loss: 0.3440 - acc: 0.9366 - val_loss: 0.4726 - val_acc: 0.8963 Epoch 222/500 76s 152ms/step - loss: 0.3434 - acc: 0.9353 - val_loss: 0.4717 - val_acc: 0.8951 Epoch 223/500 76s 152ms/step - loss: 0.3408 - acc: 0.9355 - val_loss: 0.4629 - val_acc: 0.8976 Epoch 224/500 76s 153ms/step - loss: 0.3405 - acc: 0.9352 - val_loss: 0.4724 - val_acc: 0.8898 Epoch 225/500 76s 152ms/step - loss: 0.3355 - acc: 0.9357 - val_loss: 0.4643 - val_acc: 0.8930 Epoch 226/500 77s 154ms/step - loss: 0.3328 - acc: 0.9363 - val_loss: 0.4663 - val_acc: 0.8962 Epoch 227/500 76s 152ms/step - loss: 0.3282 - acc: 0.9365 - val_loss: 0.4680 - val_acc: 0.8937 Epoch 228/500 76s 152ms/step - loss: 0.3307 - acc: 0.9350 - val_loss: 0.4550 - val_acc: 0.8949 Epoch 229/500 76s 152ms/step - loss: 0.3268 - acc: 0.9350 - val_loss: 0.4638 - val_acc: 0.8967 Epoch 230/500 76s 152ms/step - loss: 0.3253 - acc: 0.9367 - val_loss: 0.4604 - val_acc: 0.8959 Epoch 231/500 76s 152ms/step - loss: 0.3191 - acc: 0.9365 - val_loss: 0.4690 - val_acc: 0.8917 Epoch 232/500 76s 152ms/step - loss: 0.3190 - acc: 0.9369 - val_loss: 0.4653 - val_acc: 0.8924 Epoch 233/500 76s 152ms/step - loss: 0.3194 - acc: 0.9359 - val_loss: 0.4589 - val_acc: 0.8920 Epoch 234/500 76s 152ms/step - loss: 0.3107 - acc: 0.9400 - val_loss: 0.4572 - val_acc: 0.8944 Epoch 235/500 76s 152ms/step - loss: 0.3129 - acc: 0.9367 - val_loss: 0.4646 - val_acc: 0.8925 Epoch 236/500 76s 152ms/step - loss: 0.3084 - acc: 0.9379 - val_loss: 0.4510 - val_acc: 0.8959 Epoch 237/500 76s 153ms/step - loss: 0.3114 - acc: 0.9375 - val_loss: 0.4528 - val_acc: 0.8972 Epoch 238/500 76s 153ms/step - loss: 0.3092 - acc: 0.9380 - val_loss: 0.4624 - val_acc: 0.8928 Epoch 239/500 76s 152ms/step - loss: 0.3098 - acc: 0.9354 - val_loss: 0.4533 - val_acc: 0.8942 Epoch 240/500 76s 153ms/step - loss: 0.3027 - acc: 0.9383 - val_loss: 0.4513 - val_acc: 0.8928 Epoch 241/500 76s 152ms/step - loss: 0.3027 - acc: 0.9385 - val_loss: 0.4576 - val_acc: 0.8927 Epoch 242/500 76s 152ms/step - loss: 0.3029 - acc: 0.9378 - val_loss: 0.4597 - val_acc: 0.8909 Epoch 243/500 76s 152ms/step - loss: 0.3023 - acc: 0.9384 - val_loss: 0.4514 - val_acc: 0.8957 Epoch 244/500 76s 153ms/step - loss: 0.3016 - acc: 0.9366 - val_loss: 0.4510 - val_acc: 0.8932 Epoch 245/500 76s 152ms/step - loss: 0.3007 - acc: 0.9359 - val_loss: 0.4488 - val_acc: 0.8941 Epoch 246/500 76s 152ms/step - loss: 0.3017 - acc: 0.9364 - val_loss: 0.4535 - val_acc: 0.8915 Epoch 247/500 76s 152ms/step - loss: 0.2999 - acc: 0.9368 - val_loss: 0.4524 - val_acc: 0.8925 Epoch 248/500 76s 152ms/step - loss: 0.3007 - acc: 0.9361 - val_loss: 0.4611 - val_acc: 0.8867 Epoch 249/500 76s 152ms/step - loss: 0.2982 - acc: 0.9368 - val_loss: 0.4545 - val_acc: 0.8949 Epoch 250/500 76s 152ms/step - loss: 0.2968 - acc: 0.9371 - val_loss: 0.4599 - val_acc: 0.8892 Epoch 251/500 76s 152ms/step - loss: 0.2930 - acc: 0.9389 - val_loss: 0.4540 - val_acc: 0.8936 Epoch 252/500 76s 152ms/step - loss: 0.2904 - acc: 0.9384 - val_loss: 0.4589 - val_acc: 0.8920 Epoch 253/500 76s 153ms/step - loss: 0.2944 - acc: 0.9373 - val_loss: 0.4548 - val_acc: 0.8906 Epoch 254/500 76s 152ms/step - loss: 0.2883 - acc: 0.9404 - val_loss: 0.4596 - val_acc: 0.8903 Epoch 255/500 76s 152ms/step - loss: 0.2917 - acc: 0.9381 - val_loss: 0.4641 - val_acc: 0.8871 Epoch 256/500 76s 152ms/step - loss: 0.2922 - acc: 0.9368 - val_loss: 0.4643 - val_acc: 0.8868 Epoch 257/500 76s 152ms/step - loss: 0.2935 - acc: 0.9373 - val_loss: 0.4509 - val_acc: 0.8873 Epoch 258/500 76s 153ms/step - loss: 0.2934 - acc: 0.9365 - val_loss: 0.4501 - val_acc: 0.8901 Epoch 259/500 76s 152ms/step - loss: 0.2902 - acc: 0.9381 - val_loss: 0.4459 - val_acc: 0.8928 Epoch 260/500 76s 152ms/step - loss: 0.2892 - acc: 0.9367 - val_loss: 0.4547 - val_acc: 0.8896 Epoch 261/500 76s 152ms/step - loss: 0.2892 - acc: 0.9372 - val_loss: 0.4596 - val_acc: 0.8899 Epoch 262/500 76s 152ms/step - loss: 0.2906 - acc: 0.9360 - val_loss: 0.4500 - val_acc: 0.8889 Epoch 263/500 76s 152ms/step - loss: 0.2867 - acc: 0.9381 - val_loss: 0.4548 - val_acc: 0.8917 Epoch 264/500 76s 152ms/step - loss: 0.2906 - acc: 0.9366 - val_loss: 0.4553 - val_acc: 0.8876 Epoch 265/500 76s 152ms/step - loss: 0.2866 - acc: 0.9377 - val_loss: 0.4549 - val_acc: 0.8914 Epoch 266/500 76s 153ms/step - loss: 0.2869 - acc: 0.9379 - val_loss: 0.4442 - val_acc: 0.8928 Epoch 267/500 76s 153ms/step - loss: 0.2883 - acc: 0.9370 - val_loss: 0.4505 - val_acc: 0.8899 Epoch 268/500 76s 152ms/step - loss: 0.2851 - acc: 0.9388 - val_loss: 0.4590 - val_acc: 0.8879 Epoch 269/500 76s 152ms/step - loss: 0.2882 - acc: 0.9359 - val_loss: 0.4437 - val_acc: 0.8928 Epoch 270/500 77s 154ms/step - loss: 0.2882 - acc: 0.9365 - val_loss: 0.4573 - val_acc: 0.8856 Epoch 271/500 77s 153ms/step - loss: 0.2846 - acc: 0.9385 - val_loss: 0.4599 - val_acc: 0.8881 Epoch 272/500 76s 153ms/step - loss: 0.2821 - acc: 0.9373 - val_loss: 0.4548 - val_acc: 0.8898 Epoch 273/500 76s 152ms/step - loss: 0.2878 - acc: 0.9355 - val_loss: 0.4541 - val_acc: 0.8883 Epoch 274/500 76s 152ms/step - loss: 0.2875 - acc: 0.9357 - val_loss: 0.4588 - val_acc: 0.8881 Epoch 275/500 76s 152ms/step - loss: 0.2852 - acc: 0.9369 - val_loss: 0.4506 - val_acc: 0.8926 Epoch 276/500 77s 153ms/step - loss: 0.2867 - acc: 0.9356 - val_loss: 0.4445 - val_acc: 0.8914 Epoch 277/500 77s 154ms/step - loss: 0.2829 - acc: 0.9374 - val_loss: 0.4466 - val_acc: 0.8913 Epoch 278/500 76s 152ms/step - loss: 0.2851 - acc: 0.9360 - val_loss: 0.4574 - val_acc: 0.8887 Epoch 279/500 76s 152ms/step - loss: 0.2868 - acc: 0.9360 - val_loss: 0.4484 - val_acc: 0.8887 Epoch 280/500 76s 152ms/step - loss: 0.2849 - acc: 0.9369 - val_loss: 0.4615 - val_acc: 0.8851 Epoch 281/500 76s 152ms/step - loss: 0.2815 - acc: 0.9373 - val_loss: 0.4502 - val_acc: 0.8900 Epoch 282/500 76s 152ms/step - loss: 0.2863 - acc: 0.9362 - val_loss: 0.4540 - val_acc: 0.8888 Epoch 283/500 77s 153ms/step - loss: 0.2878 - acc: 0.9362 - val_loss: 0.4559 - val_acc: 0.8872 Epoch 284/500 76s 152ms/step - loss: 0.2779 - acc: 0.9389 - val_loss: 0.4531 - val_acc: 0.8888 Epoch 285/500 76s 152ms/step - loss: 0.2801 - acc: 0.9374 - val_loss: 0.4413 - val_acc: 0.8918 Epoch 286/500 76s 152ms/step - loss: 0.2817 - acc: 0.9380 - val_loss: 0.4584 - val_acc: 0.8864 Epoch 287/500 76s 152ms/step - loss: 0.2809 - acc: 0.9378 - val_loss: 0.4598 - val_acc: 0.8902 Epoch 288/500 76s 151ms/step - loss: 0.2784 - acc: 0.9391 - val_loss: 0.4477 - val_acc: 0.8907 Epoch 289/500 76s 152ms/step - loss: 0.2808 - acc: 0.9370 - val_loss: 0.4581 - val_acc: 0.8877 Epoch 290/500 76s 152ms/step - loss: 0.2813 - acc: 0.9370 - val_loss: 0.4594 - val_acc: 0.8864 Epoch 291/500 76s 152ms/step - loss: 0.2795 - acc: 0.9381 - val_loss: 0.4391 - val_acc: 0.8905 Epoch 292/500 76s 153ms/step - loss: 0.2793 - acc: 0.9385 - val_loss: 0.4471 - val_acc: 0.8881 Epoch 293/500 76s 153ms/step - loss: 0.2812 - acc: 0.9385 - val_loss: 0.4604 - val_acc: 0.8855 Epoch 294/500 76s 153ms/step - loss: 0.2808 - acc: 0.9379 - val_loss: 0.4525 - val_acc: 0.8867 Epoch 295/500 76s 152ms/step - loss: 0.2816 - acc: 0.9373 - val_loss: 0.4532 - val_acc: 0.8873 Epoch 296/500 76s 153ms/step - loss: 0.2771 - acc: 0.9384 - val_loss: 0.4337 - val_acc: 0.8934 Epoch 297/500 76s 152ms/step - loss: 0.2793 - acc: 0.9375 - val_loss: 0.4478 - val_acc: 0.8876 Epoch 298/500 76s 152ms/step - loss: 0.2823 - acc: 0.9375 - val_loss: 0.4560 - val_acc: 0.8889 Epoch 299/500 76s 153ms/step - loss: 0.2803 - acc: 0.9373 - val_loss: 0.4523 - val_acc: 0.8872 Epoch 300/500 76s 152ms/step - loss: 0.2796 - acc: 0.9380 - val_loss: 0.4439 - val_acc: 0.8888 Epoch 301/500 76s 153ms/step - loss: 0.2765 - acc: 0.9388 - val_loss: 0.4537 - val_acc: 0.8881 Epoch 302/500 76s 152ms/step - loss: 0.2759 - acc: 0.9391 - val_loss: 0.4594 - val_acc: 0.8895 Epoch 303/500 76s 151ms/step - loss: 0.2822 - acc: 0.9362 - val_loss: 0.4455 - val_acc: 0.8922 Epoch 304/500 76s 152ms/step - loss: 0.2811 - acc: 0.9361 - val_loss: 0.4593 - val_acc: 0.8870 Epoch 305/500 76s 152ms/step - loss: 0.2761 - acc: 0.9382 - val_loss: 0.4599 - val_acc: 0.8872 Epoch 306/500 76s 152ms/step - loss: 0.2753 - acc: 0.9392 - val_loss: 0.4532 - val_acc: 0.8913 Epoch 307/500 76s 152ms/step - loss: 0.2776 - acc: 0.9393 - val_loss: 0.4373 - val_acc: 0.8916 Epoch 308/500 76s 152ms/step - loss: 0.2750 - acc: 0.9388 - val_loss: 0.4406 - val_acc: 0.8915 Epoch 309/500 76s 153ms/step - loss: 0.2778 - acc: 0.9380 - val_loss: 0.4662 - val_acc: 0.8832 Epoch 310/500 76s 152ms/step - loss: 0.2790 - acc: 0.9384 - val_loss: 0.4385 - val_acc: 0.8960 Epoch 311/500 76s 152ms/step - loss: 0.2772 - acc: 0.9388 - val_loss: 0.4503 - val_acc: 0.8899 Epoch 312/500 76s 152ms/step - loss: 0.2776 - acc: 0.9388 - val_loss: 0.4423 - val_acc: 0.8938 Epoch 313/500 76s 152ms/step - loss: 0.2786 - acc: 0.9379 - val_loss: 0.4404 - val_acc: 0.8951 Epoch 314/500 76s 153ms/step - loss: 0.2767 - acc: 0.9388 - val_loss: 0.4483 - val_acc: 0.8899 Epoch 315/500 76s 152ms/step - loss: 0.2741 - acc: 0.9412 - val_loss: 0.4484 - val_acc: 0.8885 Epoch 316/500 76s 152ms/step - loss: 0.2796 - acc: 0.9371 - val_loss: 0.4526 - val_acc: 0.8883 Epoch 317/500 76s 152ms/step - loss: 0.2751 - acc: 0.9394 - val_loss: 0.4552 - val_acc: 0.8874 Epoch 318/500 76s 152ms/step - loss: 0.2775 - acc: 0.9387 - val_loss: 0.4464 - val_acc: 0.8905 Epoch 319/500 76s 152ms/step - loss: 0.2762 - acc: 0.9388 - val_loss: 0.4523 - val_acc: 0.8889 Epoch 320/500 76s 152ms/step - loss: 0.2757 - acc: 0.9383 - val_loss: 0.4490 - val_acc: 0.8901 Epoch 321/500 76s 152ms/step - loss: 0.2732 - acc: 0.9385 - val_loss: 0.4538 - val_acc: 0.8853 Epoch 322/500 76s 153ms/step - loss: 0.2812 - acc: 0.9377 - val_loss: 0.4450 - val_acc: 0.8909 Epoch 323/500 76s 153ms/step - loss: 0.2740 - acc: 0.9388 - val_loss: 0.4530 - val_acc: 0.8868 Epoch 324/500 76s 153ms/step - loss: 0.2730 - acc: 0.9391 - val_loss: 0.4544 - val_acc: 0.8882 Epoch 325/500 77s 153ms/step - loss: 0.2786 - acc: 0.9385 - val_loss: 0.4564 - val_acc: 0.8881 Epoch 326/500 76s 152ms/step - loss: 0.2793 - acc: 0.9385 - val_loss: 0.4503 - val_acc: 0.8900 Epoch 327/500 76s 152ms/step - loss: 0.2764 - acc: 0.9384 - val_loss: 0.4602 - val_acc: 0.8867 Epoch 328/500 76s 152ms/step - loss: 0.2771 - acc: 0.9386 - val_loss: 0.4446 - val_acc: 0.8888 Epoch 329/500 76s 152ms/step - loss: 0.2764 - acc: 0.9375 - val_loss: 0.4495 - val_acc: 0.8892 Epoch 330/500 76s 152ms/step - loss: 0.2773 - acc: 0.9389 - val_loss: 0.4532 - val_acc: 0.8876 Epoch 331/500 76s 152ms/step - loss: 0.2751 - acc: 0.9399 - val_loss: 0.4550 - val_acc: 0.8890 Epoch 332/500 76s 152ms/step - loss: 0.2720 - acc: 0.9395 - val_loss: 0.4577 - val_acc: 0.8870 Epoch 333/500 76s 153ms/step - loss: 0.2713 - acc: 0.9412 - val_loss: 0.4565 - val_acc: 0.8884 Epoch 334/500 76s 152ms/step - loss: 0.2731 - acc: 0.9399 - val_loss: 0.4496 - val_acc: 0.8904 Epoch 335/500 76s 152ms/step - loss: 0.2695 - acc: 0.9412 - val_loss: 0.4491 - val_acc: 0.8877 Epoch 336/500 76s 152ms/step - loss: 0.2715 - acc: 0.9403 - val_loss: 0.4476 - val_acc: 0.8909 Epoch 337/500 76s 152ms/step - loss: 0.2777 - acc: 0.9365 - val_loss: 0.4533 - val_acc: 0.8889 Epoch 338/500 76s 152ms/step - loss: 0.2727 - acc: 0.9411 - val_loss: 0.4648 - val_acc: 0.8854 Epoch 339/500 76s 152ms/step - loss: 0.2712 - acc: 0.9411 - val_loss: 0.4701 - val_acc: 0.8873 Epoch 340/500 76s 152ms/step - loss: 0.2736 - acc: 0.9398 - val_loss: 0.4632 - val_acc: 0.8874 Epoch 341/500 77s 153ms/step - loss: 0.2749 - acc: 0.9389 - val_loss: 0.4607 - val_acc: 0.8841 Epoch 342/500 76s 152ms/step - loss: 0.2697 - acc: 0.9409 - val_loss: 0.4659 - val_acc: 0.8851 Epoch 343/500 76s 152ms/step - loss: 0.2761 - acc: 0.9391 - val_loss: 0.4545 - val_acc: 0.8854 Epoch 344/500 76s 152ms/step - loss: 0.2709 - acc: 0.9410 - val_loss: 0.4563 - val_acc: 0.8860 Epoch 345/500 77s 153ms/step - loss: 0.2746 - acc: 0.9391 - val_loss: 0.4578 - val_acc: 0.8874 Epoch 346/500 76s 153ms/step - loss: 0.2726 - acc: 0.9406 - val_loss: 0.4714 - val_acc: 0.8847 Epoch 347/500 77s 153ms/step - loss: 0.2713 - acc: 0.9406 - val_loss: 0.4648 - val_acc: 0.8848 Epoch 348/500 76s 153ms/step - loss: 0.2745 - acc: 0.9401 - val_loss: 0.4541 - val_acc: 0.8875 Epoch 349/500 76s 152ms/step - loss: 0.2688 - acc: 0.9421 - val_loss: 0.4635 - val_acc: 0.8840 Epoch 350/500 76s 152ms/step - loss: 0.2736 - acc: 0.9412 - val_loss: 0.4625 - val_acc: 0.8850 Epoch 351/500 76s 152ms/step - loss: 0.2721 - acc: 0.9406 - val_loss: 0.4726 - val_acc: 0.8818 Epoch 352/500 76s 152ms/step - loss: 0.2756 - acc: 0.9399 - val_loss: 0.4567 - val_acc: 0.8870 Epoch 353/500 76s 152ms/step - loss: 0.2715 - acc: 0.9408 - val_loss: 0.4589 - val_acc: 0.8879 Epoch 354/500 76s 152ms/step - loss: 0.2714 - acc: 0.9402 - val_loss: 0.4720 - val_acc: 0.8838 Epoch 355/500 76s 152ms/step - loss: 0.2727 - acc: 0.9398 - val_loss: 0.4646 - val_acc: 0.8861 Epoch 356/500 76s 152ms/step - loss: 0.2726 - acc: 0.9416 - val_loss: 0.4490 - val_acc: 0.8886 Epoch 357/500 76s 152ms/step - loss: 0.2715 - acc: 0.9413 - val_loss: 0.4559 - val_acc: 0.8879 Epoch 358/500 76s 152ms/step - loss: 0.2711 - acc: 0.9414 - val_loss: 0.4723 - val_acc: 0.8867 Epoch 359/500 76s 152ms/step - loss: 0.2719 - acc: 0.9407 - val_loss: 0.4639 - val_acc: 0.8857 Epoch 360/500 76s 152ms/step - loss: 0.2745 - acc: 0.9398 - val_loss: 0.4669 - val_acc: 0.8851 Epoch 361/500 76s 152ms/step - loss: 0.2690 - acc: 0.9413 - val_loss: 0.4633 - val_acc: 0.8860 Epoch 362/500 76s 152ms/step - loss: 0.2701 - acc: 0.9415 - val_loss: 0.4719 - val_acc: 0.8860 Epoch 363/500 76s 152ms/step - loss: 0.2712 - acc: 0.9421 - val_loss: 0.4661 - val_acc: 0.8850 Epoch 364/500 76s 152ms/step - loss: 0.2747 - acc: 0.9393 - val_loss: 0.4545 - val_acc: 0.8875 Epoch 365/500 77s 153ms/step - loss: 0.2734 - acc: 0.9407 - val_loss: 0.4742 - val_acc: 0.8820 Epoch 366/500 77s 154ms/step - loss: 0.2745 - acc: 0.9391 - val_loss: 0.4537 - val_acc: 0.8912 Epoch 367/500 76s 152ms/step - loss: 0.2669 - acc: 0.9422 - val_loss: 0.4615 - val_acc: 0.8867 Epoch 368/500 76s 152ms/step - loss: 0.2719 - acc: 0.9407 - val_loss: 0.4636 - val_acc: 0.8891 Epoch 369/500 76s 152ms/step - loss: 0.2706 - acc: 0.9408 - val_loss: 0.4668 - val_acc: 0.8848 Epoch 370/500 76s 152ms/step - loss: 0.2714 - acc: 0.9404 - val_loss: 0.4527 - val_acc: 0.8901 Epoch 371/500 76s 152ms/step - loss: 0.2696 - acc: 0.9426 - val_loss: 0.4626 - val_acc: 0.8844 Epoch 372/500 76s 152ms/step - loss: 0.2662 - acc: 0.9430 - val_loss: 0.4587 - val_acc: 0.8889 Epoch 373/500 76s 152ms/step - loss: 0.2729 - acc: 0.9410 - val_loss: 0.4603 - val_acc: 0.8879 Epoch 374/500 76s 152ms/step - loss: 0.2692 - acc: 0.9422 - val_loss: 0.4587 - val_acc: 0.8905 Epoch 375/500 76s 152ms/step - loss: 0.2719 - acc: 0.9419 - val_loss: 0.4760 - val_acc: 0.8864 Epoch 376/500 76s 152ms/step - loss: 0.2727 - acc: 0.9401 - val_loss: 0.4500 - val_acc: 0.8895 Epoch 377/500 76s 151ms/step - loss: 0.2681 - acc: 0.9432 - val_loss: 0.4561 - val_acc: 0.8927 Epoch 378/500 76s 152ms/step - loss: 0.2763 - acc: 0.9396 - val_loss: 0.4599 - val_acc: 0.8863 Epoch 379/500 76s 152ms/step - loss: 0.2682 - acc: 0.9413 - val_loss: 0.4728 - val_acc: 0.8849 Epoch 380/500 76s 152ms/step - loss: 0.2694 - acc: 0.9426 - val_loss: 0.4717 - val_acc: 0.8832 Epoch 381/500 76s 152ms/step - loss: 0.2710 - acc: 0.9400 - val_loss: 0.4568 - val_acc: 0.8858 Epoch 382/500 76s 152ms/step - loss: 0.2734 - acc: 0.9393 - val_loss: 0.4745 - val_acc: 0.8831 Epoch 383/500 76s 152ms/step - loss: 0.2681 - acc: 0.9428 - val_loss: 0.4760 - val_acc: 0.8845 Epoch 384/500 76s 152ms/step - loss: 0.2720 - acc: 0.9414 - val_loss: 0.4651 - val_acc: 0.8879 Epoch 385/500 76s 151ms/step - loss: 0.2715 - acc: 0.9412 - val_loss: 0.4527 - val_acc: 0.8924 Epoch 386/500 76s 152ms/step - loss: 0.2662 - acc: 0.9441 - val_loss: 0.4607 - val_acc: 0.8876 Epoch 387/500 76s 152ms/step - loss: 0.2649 - acc: 0.9429 - val_loss: 0.4731 - val_acc: 0.8838 Epoch 388/500 76s 152ms/step - loss: 0.2720 - acc: 0.9407 - val_loss: 0.4683 - val_acc: 0.8842 Epoch 389/500 76s 152ms/step - loss: 0.2707 - acc: 0.9404 - val_loss: 0.4674 - val_acc: 0.8850 Epoch 390/500 76s 153ms/step - loss: 0.2687 - acc: 0.9416 - val_loss: 0.4766 - val_acc: 0.8810 Epoch 391/500 76s 152ms/step - loss: 0.2669 - acc: 0.9440 - val_loss: 0.4728 - val_acc: 0.8834 Epoch 392/500 77s 153ms/step - loss: 0.2683 - acc: 0.9422 - val_loss: 0.4572 - val_acc: 0.8880 Epoch 393/500 77s 154ms/step - loss: 0.2631 - acc: 0.9449 - val_loss: 0.4691 - val_acc: 0.8858 Epoch 394/500 77s 154ms/step - loss: 0.2681 - acc: 0.9419 - val_loss: 0.4747 - val_acc: 0.8875 Epoch 395/500 77s 154ms/step - loss: 0.2700 - acc: 0.9419 - val_loss: 0.4650 - val_acc: 0.8889 Epoch 396/500 77s 153ms/step - loss: 0.2702 - acc: 0.9419 - val_loss: 0.4520 - val_acc: 0.8901 Epoch 397/500 77s 154ms/step - loss: 0.2640 - acc: 0.9439 - val_loss: 0.4607 - val_acc: 0.8857 Epoch 398/500 77s 154ms/step - loss: 0.2683 - acc: 0.9425 - val_loss: 0.4654 - val_acc: 0.8894 Epoch 399/500 77s 154ms/step - loss: 0.2709 - acc: 0.9419 - val_loss: 0.4727 - val_acc: 0.8853 Epoch 400/500 77s 153ms/step - loss: 0.2673 - acc: 0.9429 - val_loss: 0.4670 - val_acc: 0.8873 Epoch 401/500 lr changed to 0.0009999999776482583 77s 154ms/step - loss: 0.2343 - acc: 0.9556 - val_loss: 0.4340 - val_acc: 0.8968 Epoch 402/500 77s 154ms/step - loss: 0.2155 - acc: 0.9635 - val_loss: 0.4307 - val_acc: 0.9001 Epoch 403/500 77s 154ms/step - loss: 0.2098 - acc: 0.9645 - val_loss: 0.4287 - val_acc: 0.8996 Epoch 404/500 77s 153ms/step - loss: 0.2014 - acc: 0.9686 - val_loss: 0.4280 - val_acc: 0.9001 Epoch 405/500 77s 154ms/step - loss: 0.1992 - acc: 0.9681 - val_loss: 0.4285 - val_acc: 0.9006 Epoch 406/500 77s 154ms/step - loss: 0.1960 - acc: 0.9695 - val_loss: 0.4308 - val_acc: 0.9000 Epoch 407/500 77s 153ms/step - loss: 0.1946 - acc: 0.9697 - val_loss: 0.4326 - val_acc: 0.9011 Epoch 408/500 77s 154ms/step - loss: 0.1956 - acc: 0.9703 - val_loss: 0.4329 - val_acc: 0.9021 Epoch 409/500 76s 153ms/step - loss: 0.1925 - acc: 0.9713 - val_loss: 0.4312 - val_acc: 0.9020 Epoch 410/500 77s 153ms/step - loss: 0.1875 - acc: 0.9720 - val_loss: 0.4347 - val_acc: 0.9021 Epoch 411/500 77s 154ms/step - loss: 0.1895 - acc: 0.9718 - val_loss: 0.4368 - val_acc: 0.9000 Epoch 412/500 77s 154ms/step - loss: 0.1856 - acc: 0.9722 - val_loss: 0.4390 - val_acc: 0.9012 Epoch 413/500 77s 154ms/step - loss: 0.1857 - acc: 0.9721 - val_loss: 0.4396 - val_acc: 0.9007 Epoch 414/500 77s 154ms/step - loss: 0.1842 - acc: 0.9730 - val_loss: 0.4406 - val_acc: 0.9002 Epoch 415/500 77s 154ms/step - loss: 0.1840 - acc: 0.9734 - val_loss: 0.4426 - val_acc: 0.9003 Epoch 416/500 77s 154ms/step - loss: 0.1822 - acc: 0.9738 - val_loss: 0.4447 - val_acc: 0.9009 Epoch 417/500 77s 153ms/step - loss: 0.1828 - acc: 0.9732 - val_loss: 0.4433 - val_acc: 0.8994 Epoch 418/500 77s 154ms/step - loss: 0.1826 - acc: 0.9735 - val_loss: 0.4407 - val_acc: 0.9006 Epoch 419/500 77s 153ms/step - loss: 0.1798 - acc: 0.9737 - val_loss: 0.4432 - val_acc: 0.9009 Epoch 420/500 77s 154ms/step - loss: 0.1800 - acc: 0.9738 - val_loss: 0.4415 - val_acc: 0.9016 Epoch 421/500 77s 154ms/step - loss: 0.1785 - acc: 0.9743 - val_loss: 0.4447 - val_acc: 0.9012 Epoch 422/500 77s 154ms/step - loss: 0.1792 - acc: 0.9738 - val_loss: 0.4467 - val_acc: 0.9008 Epoch 423/500 77s 154ms/step - loss: 0.1763 - acc: 0.9759 - val_loss: 0.4459 - val_acc: 0.9013 Epoch 424/500 77s 154ms/step - loss: 0.1795 - acc: 0.9735 - val_loss: 0.4501 - val_acc: 0.8997 Epoch 425/500 76s 153ms/step - loss: 0.1767 - acc: 0.9744 - val_loss: 0.4469 - val_acc: 0.9004 Epoch 426/500 77s 153ms/step - loss: 0.1766 - acc: 0.9748 - val_loss: 0.4494 - val_acc: 0.9007 Epoch 427/500 77s 154ms/step - loss: 0.1762 - acc: 0.9748 - val_loss: 0.4534 - val_acc: 0.9001 Epoch 428/500 77s 153ms/step - loss: 0.1760 - acc: 0.9751 - val_loss: 0.4516 - val_acc: 0.9014 Epoch 429/500 77s 155ms/step - loss: 0.1752 - acc: 0.9747 - val_loss: 0.4515 - val_acc: 0.8996 Epoch 430/500 77s 153ms/step - loss: 0.1764 - acc: 0.9747 - val_loss: 0.4529 - val_acc: 0.9010 Epoch 431/500 77s 154ms/step - loss: 0.1732 - acc: 0.9765 - val_loss: 0.4541 - val_acc: 0.8994 Epoch 432/500 77s 153ms/step - loss: 0.1720 - acc: 0.9764 - val_loss: 0.4530 - val_acc: 0.9000 Epoch 433/500 77s 153ms/step - loss: 0.1735 - acc: 0.9756 - val_loss: 0.4527 - val_acc: 0.9007 Epoch 434/500 77s 154ms/step - loss: 0.1723 - acc: 0.9755 - val_loss: 0.4558 - val_acc: 0.9000 Epoch 435/500 77s 154ms/step - loss: 0.1731 - acc: 0.9759 - val_loss: 0.4549 - val_acc: 0.9013 Epoch 436/500 77s 154ms/step - loss: 0.1703 - acc: 0.9764 - val_loss: 0.4560 - val_acc: 0.9017 Epoch 437/500 77s 155ms/step - loss: 0.1714 - acc: 0.9754 - val_loss: 0.4557 - val_acc: 0.9014 Epoch 438/500 77s 154ms/step - loss: 0.1691 - acc: 0.9765 - val_loss: 0.4596 - val_acc: 0.8988 Epoch 439/500 77s 153ms/step - loss: 0.1700 - acc: 0.9761 - val_loss: 0.4613 - val_acc: 0.9006 Epoch 440/500 77s 154ms/step - loss: 0.1718 - acc: 0.9754 - val_loss: 0.4611 - val_acc: 0.9001 Epoch 441/500 77s 153ms/step - loss: 0.1704 - acc: 0.9758 - val_loss: 0.4616 - val_acc: 0.9017 Epoch 442/500 77s 154ms/step - loss: 0.1663 - acc: 0.9781 - val_loss: 0.4638 - val_acc: 0.8990 Epoch 443/500 77s 154ms/step - loss: 0.1697 - acc: 0.9759 - val_loss: 0.4635 - val_acc: 0.9007 Epoch 444/500 77s 154ms/step - loss: 0.1673 - acc: 0.9775 - val_loss: 0.4664 - val_acc: 0.8994 Epoch 445/500 77s 154ms/step - loss: 0.1649 - acc: 0.9779 - val_loss: 0.4651 - val_acc: 0.8991 Epoch 446/500 77s 153ms/step - loss: 0.1692 - acc: 0.9760 - val_loss: 0.4659 - val_acc: 0.8992 Epoch 447/500 77s 153ms/step - loss: 0.1678 - acc: 0.9764 - val_loss: 0.4637 - val_acc: 0.8997 Epoch 448/500 77s 153ms/step - loss: 0.1644 - acc: 0.9774 - val_loss: 0.4659 - val_acc: 0.8996 Epoch 449/500 77s 153ms/step - loss: 0.1634 - acc: 0.9783 - val_loss: 0.4628 - val_acc: 0.9002 Epoch 450/500 77s 153ms/step - loss: 0.1662 - acc: 0.9774 - val_loss: 0.4642 - val_acc: 0.9024 Epoch 451/500 77s 154ms/step - loss: 0.1649 - acc: 0.9767 - val_loss: 0.4647 - val_acc: 0.9020 Epoch 452/500 77s 153ms/step - loss: 0.1645 - acc: 0.9776 - val_loss: 0.4674 - val_acc: 0.8994 Epoch 453/500 77s 154ms/step - loss: 0.1646 - acc: 0.9772 - val_loss: 0.4650 - val_acc: 0.8999 Epoch 454/500 77s 154ms/step - loss: 0.1639 - acc: 0.9786 - val_loss: 0.4683 - val_acc: 0.8973 Epoch 455/500 77s 154ms/step - loss: 0.1626 - acc: 0.9778 - val_loss: 0.4665 - val_acc: 0.8997 Epoch 456/500 77s 154ms/step - loss: 0.1634 - acc: 0.9779 - val_loss: 0.4647 - val_acc: 0.8993 Epoch 457/500 76s 153ms/step - loss: 0.1623 - acc: 0.9785 - val_loss: 0.4645 - val_acc: 0.8996 Epoch 458/500 77s 154ms/step - loss: 0.1616 - acc: 0.9780 - val_loss: 0.4654 - val_acc: 0.9007 Epoch 459/500 77s 153ms/step - loss: 0.1617 - acc: 0.9777 - val_loss: 0.4664 - val_acc: 0.8987 Epoch 460/500 77s 153ms/step - loss: 0.1623 - acc: 0.9777 - val_loss: 0.4652 - val_acc: 0.8989 Epoch 461/500 77s 154ms/step - loss: 0.1595 - acc: 0.9789 - val_loss: 0.4637 - val_acc: 0.8992 Epoch 462/500 77s 154ms/step - loss: 0.1609 - acc: 0.9789 - val_loss: 0.4675 - val_acc: 0.8967 Epoch 463/500 77s 153ms/step - loss: 0.1615 - acc: 0.9779 - val_loss: 0.4731 - val_acc: 0.8981 Epoch 464/500 77s 153ms/step - loss: 0.1612 - acc: 0.9778 - val_loss: 0.4656 - val_acc: 0.9017 Epoch 465/500 77s 153ms/step - loss: 0.1571 - acc: 0.9793 - val_loss: 0.4738 - val_acc: 0.9003 Epoch 466/500 77s 154ms/step - loss: 0.1606 - acc: 0.9773 - val_loss: 0.4741 - val_acc: 0.8996 Epoch 467/500 76s 153ms/step - loss: 0.1591 - acc: 0.9794 - val_loss: 0.4749 - val_acc: 0.8988 Epoch 468/500 77s 154ms/step - loss: 0.1594 - acc: 0.9780 - val_loss: 0.4723 - val_acc: 0.8969 Epoch 469/500 77s 154ms/step - loss: 0.1591 - acc: 0.9786 - val_loss: 0.4748 - val_acc: 0.8981 Epoch 470/500 77s 154ms/step - loss: 0.1560 - acc: 0.9795 - val_loss: 0.4730 - val_acc: 0.8972 Epoch 471/500 77s 154ms/step - loss: 0.1574 - acc: 0.9791 - val_loss: 0.4760 - val_acc: 0.8975 Epoch 472/500 77s 153ms/step - loss: 0.1577 - acc: 0.9786 - val_loss: 0.4757 - val_acc: 0.8974 Epoch 473/500 77s 153ms/step - loss: 0.1543 - acc: 0.9799 - val_loss: 0.4787 - val_acc: 0.8955 Epoch 474/500 77s 154ms/step - loss: 0.1552 - acc: 0.9800 - val_loss: 0.4751 - val_acc: 0.8966 Epoch 475/500 77s 154ms/step - loss: 0.1579 - acc: 0.9778 - val_loss: 0.4761 - val_acc: 0.8954 Epoch 476/500 77s 154ms/step - loss: 0.1566 - acc: 0.9795 - val_loss: 0.4738 - val_acc: 0.8973 Epoch 477/500 77s 154ms/step - loss: 0.1552 - acc: 0.9795 - val_loss: 0.4787 - val_acc: 0.8966 Epoch 478/500 77s 153ms/step - loss: 0.1569 - acc: 0.9789 - val_loss: 0.4724 - val_acc: 0.8986 Epoch 479/500 77s 154ms/step - loss: 0.1544 - acc: 0.9796 - val_loss: 0.4722 - val_acc: 0.8991 Epoch 480/500 77s 153ms/step - loss: 0.1566 - acc: 0.9790 - val_loss: 0.4749 - val_acc: 0.8977 Epoch 481/500 77s 153ms/step - loss: 0.1539 - acc: 0.9797 - val_loss: 0.4756 - val_acc: 0.8982 Epoch 482/500 77s 154ms/step - loss: 0.1543 - acc: 0.9793 - val_loss: 0.4783 - val_acc: 0.8978 Epoch 483/500 77s 153ms/step - loss: 0.1546 - acc: 0.9793 - val_loss: 0.4776 - val_acc: 0.8973 Epoch 484/500 77s 154ms/step - loss: 0.1549 - acc: 0.9787 - val_loss: 0.4755 - val_acc: 0.8977 Epoch 485/500 77s 154ms/step - loss: 0.1534 - acc: 0.9786 - val_loss: 0.4774 - val_acc: 0.8976 Epoch 486/500 77s 154ms/step - loss: 0.1528 - acc: 0.9795 - val_loss: 0.4746 - val_acc: 0.8997 Epoch 487/500 77s 154ms/step - loss: 0.1522 - acc: 0.9798 - val_loss: 0.4762 - val_acc: 0.8996 Epoch 488/500 77s 153ms/step - loss: 0.1538 - acc: 0.9790 - val_loss: 0.4771 - val_acc: 0.8986 Epoch 489/500 277/500 [===============>..............] - ETA: 33s - loss: 0.1521 - acc: 0.9798 Traceback (most recent call last): KeyboardInterrupt
这次是故意中断的,估计跑完500个epoch,效果也没有上一篇(调参记录3)的时候效果好。其中,在第122个epoch的时候,电脑居然休眠了,浪费了一万多秒。
Minghang Zhao, Shisheng Zhong, Xuyun Fu, Baoping Tang, Shaojiang Dong, Michael Pecht, Deep Residual Networks with Adaptively Parametric Rectifier Linear Units for Fault Diagnosis, IEEE Transactions on Industrial Electronics, 2020, DOI: 10.1109/TIE.2020.2972458, Date of Publication: 13 February 2020
https://ieeexplore.ieee.org/d...
————————————————
版权声明:本文为CSDN博主「dangqing1988」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/dangqin...