Python教程

python dataframe astype 字段类型转换方法

本文主要是介绍python dataframe astype 字段类型转换方法,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

使用astype实现dataframe字段类型转换

# -*- coding: UTF-8 -*-
import pandas as pd
df = pd.DataFrame([{'col1':'a', 'col2':'1'}, {'col1':'b', 'col2':'2'}])
print df.dtypes
df['col2'] = df['col2'].astype('int')
print '-----------'
print df.dtypes
df['col2'] = df['col2'].astype('float64')
print '-----------'
print df.dtypes

输出结果:

col1  object
col2  object
dtype: object
-----------
col1  object
col2   int32
dtype: object
-----------
col1   object
col2  float64
dtype: object

注:data type list

Data type  Description
bool_  Boolean (True or False) stored as a byte
int_  Default integer type (same as C long; normally either int64 or int32)
intc  Identical to C int (normally int32 or int64)
intp  Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8  Byte (-128 to 127)
int16  Integer (-32768 to 32767)
int32  Integer (-2147483648 to 2147483647)
int64  Integer (-9223372036854775808 to 9223372036854775807)
uint8  Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float_ Shorthand for float64.
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_  Shorthand for complex128.
complex64  Complex number, represented by two 32-bit floats (real and imaginary components)
complex128 Complex number, represented by two 64-bit floats (real and imaginary components)

以上这篇python dataframe astype 字段类型转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持找一找教程网。

这篇关于python dataframe astype 字段类型转换方法的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!