Python教程

对sklearn的使用之数据集的拆分与训练详解(python3.6)

本文主要是介绍对sklearn的使用之数据集的拆分与训练详解(python3.6),对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

研修课上讲了两个例子,融合一下。

主要演示大致的过程:

导入->拆分->训练->模型报告

以及几个重要问题:

①标签二值化

②网格搜索法调参

③k折交叉验证

④增加噪声特征(之前涉及)

from sklearn import datasets
#从cross_validation导入会出现warning,说已弃用
from sklearn.model_selection import train-test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
import sklearn.exceptioins
#导入鸢尾花数据集
iris = datasets.load_iris()
#将数据集拆分为训练集和测试集各一半
#其中X为数据特征(花萼、花瓣的高度宽度),为150*4的矩阵
#Y为鸢尾花种类(0, 1, 2三种),为150*1矩阵
#如果使用标签二值化, 将0, 1, 2表示为100 010 001
#使用y.label_binarize(y, classes[0, 1, 2]),变为150*3矩阵
X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.5, random_state=0)
#set the parameters by cross_validation
turn_parameters = [{'kernel' : ['rbf', 'gamma' : [1e-3, 1e - 4, 'C':[1,10,100,1000]}, 
{'kernel':['linear'], 'C':[1,10,100,1000]}
]
#clf分离器
#使用网格搜索法调超参数
#训练集做5折交叉验证
clf = GridSearchCV(SVC(C=1), turned_parameters, cv=5, scoring='%s_weighted' % score)
#用前一半train数据再做5折交叉验证
#因为之前的train_test_split已经分割为2份了
#fit-拟合
clf.fit(X_train, y_train)
#超参数
print(clf.best_params_)
#得分
for params, mean_score, scores in clf.gird_scores_:
 print("%.3f (+/-%.0.03f) for %r" % (mean_score, scores.std()*1.96,params))
#分类报告
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))

以上这篇对sklearn的使用之数据集的拆分与训练详解(python3.6)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持找一找教程网。

这篇关于对sklearn的使用之数据集的拆分与训练详解(python3.6)的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!