Python教程

numpy基础教程之np.linalg

本文主要是介绍numpy基础教程之np.linalg,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

前言

numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。本文讲给大家介绍关于numpy基础之 np.linalg的相关内容,下面话不多说了,来一起看看详细的介绍吧

(1)np.linalg.inv():矩阵求逆

(2)np.linalg.det():矩阵求行列式(标量)

np.linalg.norm

顾名思义,linalg=linear+algebra linalg=linear+algebra\mathrm{linalg=linear + algebra},norm norm\mathrm{norm}则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):

首先help(np.linalg.norm)查看其文档:

norm(x, ord=None, axis=None, keepdims=False)1

这里我们只对常用设置进行说明,x x\mathrm{x}表示要度量的向量,ord ord\mathrm{ord}表示范数的种类,

 

>>> x = np.array([3, 4])
>>> np.linalg.norm(x)
5.
>>> np.linalg.norm(x, ord=2)
5.
>>> np.linalg.norm(x, ord=1)
7.
>>> np.linalg.norm(x, ord=np.inf)
4123456789

范数理论的一个小推论告诉我们:ℓ 1 ≥ℓ 2 ≥ℓ ∞  ℓ1≥ℓ2≥ℓ∞

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对找一找教程网的支持。

这篇关于numpy基础教程之np.linalg的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!