本文深入探讨了大厂算法教程的相关内容,涵盖了算法的基础概念、应用场景以及在大厂中的实际应用。文章还详细介绍了学习算法的重要性,并提供了丰富的示例代码和常见算法类型的解析。最后,文章分享了如何准备大厂面试中的算法题和推荐的学习资源。
算法是一系列明确、可执行的步骤,用于解决问题或完成特定任务。算法的输出结果依赖于输入数据的特性,且必须具有以下特性:
def page_rank(graph, num_iterations=100, damping_factor=0.85): num_pages = len(graph) pagerank = [1 / num_pages] * num_pages for _ in range(num_iterations): new_pagerank = [0] * num_pages for i in range(num_pages): for j in range(num_pages): if graph[j][i] > 0: incoming_links = sum(graph[j]) for k in range(num_pages): if graph[k][i] > 0: new_pagerank[i] += pagerank[k] / incoming_links new_pagerank = [damping_factor * pr + (1 - damping_factor) / num_pages for pr in new_pagerank] pagerank = new_pagerank return pagerank
import numpy as np def collaborative_filtering(user_items, user): user_similarity = np.dot(user_items, user) / (np.linalg.norm(user_items, axis=1) * np.linalg.norm(user)) weighted_ratings = user_items.T * user_similarity[:, np.newaxis] return np.sum(weighted_ratings, axis=0) / np.sum(user_similarity) user_items = np.array([ [1, 2, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1], [1, 0, 1, 0] ]) user = np.array([1, 0, 0, 0]) recommendations = collaborative_filtering(user_items, user) print(recommendations)
def user_behavior_analysis(user_actions, user): user_profile = np.zeros(len(user_actions[0])) for action in user_actions: if action[0] == user: user_profile[action[1]] += 1 return user_profile user_actions = [ (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3) ] user = 1 profile = user_behavior_analysis(user_actions, user) print(profile)
def social_media_feed_sort(feed, user): user_engagement = {action[0]: action[1] for action in user_actions} sorted_feed = sorted(feed, key=lambda page: user_engagement.get(page, 0), reverse=True) return sorted_feed feed = ['PageA', 'PageB', 'PageC', 'PageD'] sorted_feed = social_media_feed_sort(feed, user) print(sorted_feed)
掌握算法是提高编程技能的关键步骤。算法可以提高程序的执行效率,减少资源消耗,同时提升解决问题的能力。在大厂面试中,算法题是不可或缺的一部分,掌握各种算法可以帮助你更好地应对技术面试。
# 排序算法示例:快速排序 def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right)
# 搜索算法示例:二分查找 def binary_search(arr, target): low, high = 0, len(arr) - 1 while low <= high: mid = (low + high) // 2 if arr[mid] == target: return mid elif arr[mid] < target: low = mid + 1 else: high = mid - 1 return -1
import heapq def dijkstra(graph, start): n = len(graph) distances = [float('inf')] * n distances[start] = 0 heap = [(0, start)] while heap: current_distance, current_node = heapq.heappop(heap) if current_distance > distances[current_node]: continue for neighbor, weight in enumerate(graph[current_node]): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(heap, (distance, neighbor)) return distances
# 贪心算法示例:活动选择问题 def activity_selection(start_times, end_times): activities = sorted(zip(start_times, end_times), key=lambda x: x[1]) selected_activities = [activities[0]] for i in range(1, len(activities)): if activities[i][0] >= activities[selected_activities[-1][1]]: selected_activities.append(activities[i]) return selected_activities
# 数组示例 array = [1, 2, 3, 4, 5] sum_of_array = sum(array) print(f"数组之和: {sum_of_array}") # 链表示例 class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def print_list(head): current = head while current: print(current.val, end=" -> ") current = current.next print("None") head = ListNode(1) head.next = ListNode(2) head.next.next = ListNode(3) print_list(head) # 栈示例 class Stack: def __init__(self): self.items = [] def is_empty(self): return len(self.items) == 0 def push(self, item): self.items.append(item) def pop(self): if not self.is_empty(): return self.items.pop() return None stack = Stack() stack.push(1) stack.push(2) print(stack.pop()) # 输出: 2 # 队列示例 from collections import deque queue = deque() queue.append(1) queue.append(2) print(queue.popleft()) # 输出: 1 # 树示例 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) # 图示例 class Graph: def __init__(self, num_nodes): self.num_nodes = num_nodes self.adj_matrix = [[0] * num_nodes for _ in range(num_nodes)] def add_edge(self, u, v): self.adj_matrix[u][v] = 1 self.adj_matrix[v][u] = 1 graph = Graph(5) graph.add_edge(0, 1) graph.add_edge(1, 2) graph.add_edge(2, 3) graph.add_edge(3, 4) print(graph.adj_matrix)