@TOC
本项目开源
艾滋病是当前人类社会最严重的瘟疫之一,从1981年发现以来的20多年间,它已经吞噬了近3000万人的生命。
艾滋病的医学全名为“获得性免疫缺损综合症”,英文简称AIDS,它是由艾滋病毒(医学全名为“人体免疫缺损病毒”, 英文简称HIV)引起的。这种病毒破坏人的免疫系统,使人体丧失抵抗各种疾病的能力,从而严重危害人的生命。人类免疫系统的CD4细胞在抵御HIV的入侵中起着重要作用,当CD4被HIV感染而裂解时,其数量会急剧减少,HIV将迅速增加,导致AIDS发作。
艾滋病治疗的目的,是尽量减少人体内HIV的数量,同时产生更多的CD4,至少要有效地降低CD4减少的速度,以提高人体免疫能力。
迄今为止人类还没有找到能根治AIDS的疗法,目前的一些AIDS疗法不仅对人体有副作用,而且成本也很高。许多国家和医疗组织都在积极试验、寻找更好的AIDS疗法。
现在得到了美国艾滋病医疗试验机构ACTG公布的两组数据。 ACTG320(见附件1)是同时服用zidovudine(齐多夫定),lamivudine(拉美夫定)和indinavir(茚地那韦)3种药物的300多名病人每隔几周测试的CD4和HIV的浓度(每毫升血液里的数量)。193A(见附件2)是将1300多名病人随机地分为4组,每组按下述4种疗法中的一种服药,大约每隔8周测试的CD4浓度(这组数据缺HIV浓度,它的测试成本很高)。4种疗法的日用药分别为:600mg zidovudine或400mg didanosine(去羟基苷),这两种药按月轮换使用;600 mg zidovudine加2.25 mg zalcitabine(扎西他滨);600 mg zidovudine加400 mg didanosine;600 mg zidovudine加400 mg didanosine,再加400 mg nevirapine(奈韦拉平)。
请你完成以下问题:
(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间(继续治疗指在测试终止后继续服药,如果认为继续服药效果不好,则可选择提前终止治疗)。
(2)利用附件2的数据,评价4种疗法的优劣(仅以CD4为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间。
(3)艾滋病药品的主要供给商对不发达国家提供的药品价格如下:600mg zidovudine 1.60美元,400mg didanosine 0.85美元,2.25 mg zalcitabine 1.85美元,400 mg nevirapine 1.20美元。如果病人需要考虑4种疗法的费用,对(2)中的评价和预测(或者提前终止)有什么改变。
附件下载地址
打开附件1:(以下只展示了极小部分的数据)
附件1 ACTG320数据 同时服用3种药物(zidovudine, lamivudine,indinavir)的300多名病人每隔几周测试的CD4和HIV的浓度。 第1列是病人编号,第2列是测试CD4的时刻(周),第3列是测得的CD4(乘以0.2个/ul),第4列是测试HIV的时刻(周),第5列是测得的HIV(单位不详)。 PtID CD4Date CD4Count RNADate VLoad 23424 0 178 0 5.5 23424 4 228 4 3.9 23424 8 126 8 4.7 23424 25 171 25 4 23424 40 99 40 5 23425 0 14 0 5.3
可以看到数据排列的方式非常整齐,这使得我们可以快速按行读取数据。首先,删掉文本的非数据部分:(以下只展示了极小部分的数据)
23496 0 57 0 5.3 23496 4 202 4 3.9 23496 9 2.6 23496 29 236 29 2.7 23496 39 260 39 3.5 23516 0 14 0 5.6 23516 4 27 4 3.4 23516 8 72 8 2.4 23516 24 0 23516 42 237 42 2.5 23517 0 74 23517 5 92 23517 9 157 23517 26 181 23518 0 85 0 4.8 23518 3 60 3 2.3 23518 7 98 7 3.9 23518 24 54 24 3.7
在按行读取之前,还有一个比较关键的问题:有的数据是缺失的,且只有编号23496缺失第2、3列数据。因此,制定以下读取策略:
''' Created by Han Xu email:736946693@qq.com ''' total=[] f=open("附件1纯数据.txt",encoding="utf-8",mode="r") lastID="" currentID="" for line in f: lineData=line.split() currentID = float(lineData[0]) CD4Date = -1 CD4Count = -1 RNADate = -1 VLoad = -1 if (len(lineData) == 5): CD4Date = float(lineData[1]) CD4Count = float(lineData[2]) RNADate = float(lineData[3]) VLoad = float(lineData[4]) else: if (lineData[0] == "23496"): RNADate = float(lineData[1]) VLoad = float(lineData[2]) else: CD4Date = float(lineData[1]) CD4Count = float(lineData[2]) new_data={"CD4Date":CD4Date,"CD4Count":CD4Count,"RNADate":RNADate,"VLoad":VLoad} if(currentID!=lastID): individual = {"id": None, "data": []} individual["id"] = currentID individual["data"].append(new_data) total.append(individual) else: total[len(total)-1]["data"].append(new_data) lastID = currentID
在以上部分中,建立了一个名为total的列表,列表中每个元素是这样的:
print(total[0])
{'id': 23424.0, 'data': [{'CD4Date': 0.0, 'CD4Count': 178.0, 'RNADate': 0.0, 'VLoad': 5.5}, {'CD4Date': 4.0, 'CD4Count': 228.0, 'RNADate': 4.0, 'VLoad': 3.9}, {'CD4Date': 8.0, 'CD4Count': 126.0, 'RNADate': 8.0, 'VLoad': 4.7}, {'CD4Date': 25.0, 'CD4Count': 171.0, 'RNADate': 25.0, 'VLoad': 4.0}, {'CD4Date': 40.0, 'CD4Count': 99.0, 'RNADate': 40.0, 'VLoad': 5.0}]}
这样,我们就完成了附件1的数据的读取
在所给数据中,有不少的数据是缺失的,为了尽可能地利用数据,利用拉格朗日线性插值法对空缺数据进行补充。方法如下:
y=yk×x−xk+1xk−xk+1+yk+1×x−xkxk+1−xk y=y_{k} \times \frac{x-x_{k+1}}{x_{k}-x_{k+1}}+y_{k+1} \times \frac{x-x_{k}}{x_{k+1}-x_{k}} y=yk×xk−xk+1x−xk+1+yk+1×xk+1−xkx−xk
23516 8 72 8 2.4 23516 24 0 23516 42 237 42 2.5
举例而言,在如上的数据中,要补全编号23516个体的第3、4列数据,则:先指定x=24
KaTeX parse error: Expected 'EOF', got '\\' at position 28: ….4,y_{k+1}=2.5 \̲\̲ x_{k}=8,x_{k+1…
可以轻松计算出预测的y值。
详细的代码在源码的repairData.py中。
首先,根据文本中的大量数据,拟定针对CD4浓度和VLoad浓度分别拟合出关于时间t的函数,此为总体方针。CD4浓度越大越好,VLoad浓度越小越好。为了统筹两条函数曲线,可以对VLoad浓度进行取负,然后将二者相加。当然,必须要先将数据标准化才可以相加。
在所给的数据文本中,CD4Date数据(第三列)的极差非常大,而且VLoad数据的单位也不确定。因此,首先要对数据进行标准化处理。这里采用Z-score 标准化:
对于样本 XXX 中的每个特征:
Xnormalized=(X−μ)σ X_{normalized} = \frac{(X - \mu)}{\sigma} Xnormalized=σ(X−μ)
其中,μ\muμ 是该特征的平均值,σ\sigmaσ 是该特征的标准差。
标准化的代码在源码的dataProcessing.py中。
读取完数据后,注意到,在文本中,有很多的数据具有相同的时刻t,如下:
23424 0 178 0 5.5 23425 0 14 0 5.3 23426 0 101 0 4.5 23427 0 10 0 5.3
拟针对具有相同时刻t的数据组(x,y1),(x,y2),(x,y3),(x,y4)(x,y_{1}),(x,y_{2}),(x,y_{3}),(x,y_{4})(x,y1),(x,y2),(x,y3),(x,y4),求出其平均值(x,yaverage)(x,y_{average})(x,yaverage),然后进行拟合。
此部分的代码在源码的dataProcessing.py中。
在模型一中,拟合方法是,直接对具有相同时刻t的数据组(x,y1),(x,y2),(x,y3),(x,y4)(x,y_{1}),(x,y_{2}),(x,y_{3}),(x,y_{4})(x,y1),(x,y2),(x,y3),(x,y4),求出其平均值(x,yaverage)(x,y_{average})(x,yaverage)。然而,在拟合过程中,这些具有相同时刻t的数据组,和孤立的数据,起到同样的拟合作用。也就是说,它们的重要程度是相同的。但是,具有相同时刻t的数据组显然要比孤立的数据要更加精确。因此,模型一的拟合是不合理的。
出于以上考虑,现使用一种创新性的数据处理办法,使得在拟合时,体现出具有相同时刻t的数据组的重要性,方法如下:
假如有如下数据组:(x,y1),(x,y2),(x,y3),(x,y4)(x,y_{1}),(x,y_{2}),(x,y_{3}),(x,y_{4})(x,y1),(x,y2),(x,y3),(x,y4),它们的x数据是相同的。首先,先求出其y值的均值,(x,yaverage)(x,y_{average})(x,yaverage)。然后,尝试增加其数据密度,要求其在拟合时起到更加显著的作用。原数据组样本容量为4,然后确定x的数量级,以小于n个x的数量级为基准,对数据组中每个坐标的x添加偏置offset,使得数据组中每个坐标的x都各不相同但差别极小可以忽略不计。
举例而言,假如有数据组(1,1),(1,2),(1,3),(1,4)(1,1),(1,2),(1,3),(1,4)(1,1),(1,2),(1,3),(1,4),按照以上方法,可以获得数据组(0.9998,2.5),(0.9999,2.5),(1.0001,2.5),(1.0002,2.5)(0.9998,2.5),(0.9999,2.5),(1.0001,2.5),(1.0002,2.5)(0.9998,2.5),(0.9999,2.5),(1.0001,2.5),(1.0002,2.5)
这种方法的代码在源码的dataProcessing.py中。
接下来同样进行拟合。然后把拟合好的曲线进行融合,结果如下:
此部分代码在在源码的combine2func.py中
首先,附件2文本中的数据是这样的:(以下只展示了极小部分的数据)
附件2 193A数据 1300多名病人按照4种疗法服药大约每隔8周测试的CD4浓度。 第1列是病人编号,第2列是4种疗法的代码: 1 = 600mg zidovudine 与400mg didanosine按月轮换使用; 2 = 600mg zidovudine 加2.25mg zalcitabine; 3 = 600mg zidovudine 加400mg didanosine; 4 = 600mg zidovudine 加400mg didanosine 加400mg nevirapine。 第3列是病人年龄,第4列是测试CD4的时刻(周),第5列是测得的CD4,取值log(CD4+1). ID 疗法 年龄 时间 Log(CD4 count+1) 1 2 36.4271 0 3.1355 1 2 36.4271 7.5714 3.0445 1 2 36.4271 15.5714 2.7726 1 2 36.4271 23.5714 2.8332 1 2 36.4271 32.5714 3.2189 1 2 36.4271 40 3.0445 2 4 47.8467 0 3.0681 2 4 47.8467 8 3.8918 2 4 47.8467 16 3.9703 2 4 47.8467 23 3.6109 2 4 47.8467 30.7143 3.3322 2 4 47.8467 39 3.0910 3 1 60.2875 0 3.7377 4 3 36.5969 0 4.1190 4 3 36.5969 7.1429 4.1109 4 3 36.5969 16.1429 4.7095 4 3 36.5969 32.4286 2.8332 5 1 35.948 0 3.5835 5 1 35.948 8 3.4340 5 1 35.948 16 3.4340 5 1 35.948 24 3.7136 5 1 35.948 32 3.0445 5 1 35.948 40 2.3979
由于病人的年龄差别较大,且不同年龄的病人的抵抗力差别也比较大,因此,将病人按照年龄划分为4个样本组:14~25岁、25~35岁、36~45岁、45岁以上。
此外,可以发现CD4浓度的测试时间集中在以下几个时间段:第0周、第7~9周、第15~17周、第23~25周、第31~33周、第38周以上。因此,基于测量时刻,对每个样本组划分出若干个数据组。
读取数据的代码在源码的readDataTxt2.py中。
首先,针对一个数据组(x1,y1),(x2,y2),(x3,y3),(x4,y4)(x_{1},y_{1}),(x_{2},y_{2}),(x_{3},y_{3}),(x_{4},y_{4})(x1,y1),(x2,y2),(x3,y3),(x4,y4),求出其平均值(xaverage,yaverage)(x_{average},y_{average})(xaverage,yaverage),由于针对时间t分成了6个数据组,因此会得到6个数据点。
接下来,为了描绘CD4浓度的变化,对这六个点,相邻的两点y值做减法,最终得到5个点,然后用这5个点进行拟合。下面展示一个年龄组的拟合结果:
此部分的代码在源码的Task2_fit.py中。
在第二小问中,我们拟合出了CD4浓度变化量的函数曲线。对于某种疗法的某个病人来说,CD4浓度变化量大于0且越大,表明CD4增加得越多,说明该疗法越有效。而当CD4浓度变化量小于或等于0且越小时,说明该疗法对于病人是没有效果甚至是有副作用的,因此对于疗法失效,且另作统计为疗法的失效率,记为QQQ。我们对得到的的数据进行统计,利用以下公式:
根据以上分析,我们计算每个疗法的得分:g=Daverage×(1−q)2÷σg=D_{average} \times (1-q)^{2} \div \sigmag=Daverage×(1−q)2÷σ
如果病人考虑到四种疗法的费用,结合自身的经济承受能力来选择疗法。我们引入了价格因素r,其中p是疗法所需的费用,r是病人对费用的敏感指数。由于个人经济承受能力的不同,每个人对费用的敏感程度是不同的。因此,我们在模型中引入了费用敏感指数,费用敏感指数越大,说明病人对费用越敏感。当r=0(即pr=1p^{r}=1pr=1)时,价格因素不起作用,病人对费用不敏感,表示病人只追求最好的治疗效果,无论付出多大的费用。当r=1(即pr=pp^{r}=ppr=p)时,价格因素对病人选择的疗法有较大的影响,此时病人会折中考虑费用和疗效。
综合考虑效果和费用的共同作用,对刚刚得到的疗法得分进行如下处理,来评价疗法的优劣:U=g÷prU=g \div p^{r}U=g÷pr
计算最终得分的代码在源码的Task3.py中。
本文由博客一文多发平台 OpenWrite 发布!