Java教程

Python实现Java mybatis-plus 产生的SQL自动化测试SQL速度和判断SQL是否走索引

本文主要是介绍Python实现Java mybatis-plus 产生的SQL自动化测试SQL速度和判断SQL是否走索引,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

Python实现Java mybatis-plus 产生的SQL自动化测试SQL速度和判断SQL是否走索引

文件目录如下

│  sql_speed_test.py
│  
├─input
│      data-report_in_visit_20240704.log
│      resource_in_sso_20240704.log
│      
└─output
        data-report_in_visit_20240704.csv
        resource_in_sso_20240704.csv

目前每次做实验都要将Java中的SQL做性能测试,否则就没法通过考核,属实难崩。

sql_speed_test.py是我用python写的程序,将从Java mybatis-plus控制台产生的日志复制到data-report_in_visit_20240704.logresource_in_sso_20240704.log文件中,运行程序之后output文件夹会自动输出csv文件,下面为csv文件夹详情。

data-report_in_visit_20240704.log文件

-- 301 -- [2024-07-04 14:22:55.055] [org.apache.ibatis.logging.jdbc.BaseJdbcLogger] [http-nio-9006-exec-2] [143] [DEBUG] [traceId:] ==>
SELECT resource_id AS resource_id, resource_type AS resource_type, sum(IFNULL(internal_pv, pv)) AS internal_pv, sum(IFNULL(google_pv, pv)) AS google_pv, sum(IFNULL(other_pv, pv)) AS other_pv, sum(IFNULL(pv, 0)) AS pv FROM t_bw_article_daily_statistic where resource_type = 9 GROUP BY resource_id, resource_type order by resource_id, resource_type
-- 302 -- [2024-07-04 14:22:55.055] [org.apache.ibatis.logging.jdbc.BaseJdbcLogger] [http-nio-9006-exec-2] [143] [DEBUG] [traceId:] ==>
SELECT resource_id AS resource_id, resource_type AS resource_type, sum(IFNULL(internal_pv, pv)) AS internal_pv, sum(IFNULL(google_pv, pv)) AS google_pv, sum(IFNULL(other_pv, pv)) AS other_pv, sum(IFNULL(pv, 0)) AS pv FROM t_bw_article_daily_statistic_202406 where resource_type = 9 GROUP BY resource_id, resource_type order by resource_id, resource_type

data-report_in_visit_20240704.csv文件

序号 SQL功能描述 SQL 预估业务数据量 实际测试数据量 执行时间 执行结果 索引是否生效 所属项目 所在库
1 SELECT resource_id AS resource_id, resource_type AS resource_type, sum(IFNULL(internal_pv, pv)) AS internal_pv, sum(IFNULL(google_pv, pv)) AS google_pv, sum(IFNULL(other_pv, pv)) AS other_pv, sum(IFNULL(pv, 0)) AS pv FROM t_bw_article_daily_statistic where resource_type = 9 GROUP BY resource_id, resource_type order by resource_id, resource_type t_bw_article_daily_statistic t_bw_article_daily_statistic:5741行 0.419603 秒 462 data-report visit
2 SELECT resource_id AS resource_id, resource_type AS resource_type, sum(IFNULL(internal_pv, pv)) AS internal_pv, sum(IFNULL(google_pv, pv)) AS google_pv, sum(IFNULL(other_pv, pv)) AS other_pv, sum(IFNULL(pv, 0)) AS pv FROM t_bw_article_daily_statistic_202406 where resource_type = 9 GROUP BY resource_id, resource_type order by resource_id, resource_type t_bw_article_daily_statistic_202406 t_bw_article_daily_statistic_202406:296358行 0.291532 秒 2691 data-report visit

sql_speed_test.py文件

import os
import csv
import re
from pymysql import *
import time

"""
开发一个用于SQL性能测试的工具,避免一直做重复工作
将Java中的每一条SQL采用mybatis-plus-plugin插件抓出来转存至log文件中
抓住每条SQL做测试
"""


def extract_query_sql_table_names(sql):
    # 正则表达式模式
    pattern = re.compile(
        r"\b(?:FROM|JOIN|INTO|UPDATE|TABLE|INTO)\s+([`\"\[\]]?[a-zA-Z_][\w$]*[`\"\[\]]?)",
        re.IGNORECASE
    )

    # 查找所有匹配的表名
    matches = pattern.findall(sql)

    # 去掉引号和方括号
    tables = [re.sub(r'[`"\[\]]', '', match) for match in matches]
    filter_tables = []
    for table in tables:
        if "t_bw" in table:
            filter_tables.append(table)

    return filter_tables


def check_index_usage(connection, sql):
    if not sql.startswith("select") and not sql.startswith("SELECT"):
        return False
    try:
        with connection.cursor() as cursor:
            # 使用 EXPLAIN 来获取查询计划
            explain_sql = f"EXPLAIN {sql}"
            cursor.execute(explain_sql)
            explain_result = cursor.fetchall()

            # 打印 EXPLAIN 结果
            print("EXPLAIN 结果:")
            for row in explain_result:
                print(row)

            # 检查每行是否使用了索引
            for row in explain_result:
                if row[5] is not None:
                    print(f"SQL 使用了索引: {row[5]}")
                    return True

            print("SQL 未使用索引")
            return False
    finally:
        pass
        # connection.close()


def count_rows(connection, table_name):
    try:
        with connection.cursor() as cursor:
            # 构建 SQL 语句
            sql = f"SELECT COUNT(*) FROM {table_name}"

            # 执行 SQL 语句
            cursor.execute(sql)

            # 获取结果
            result = cursor.fetchone()

            # 返回结果
            return result[0]
    except Exception as e:
        print(e)
    finally:
        # connection.close()
        pass


class SqlSpeedTest:
    def __init__(self):
        self.input_dir = "./input"
        self.output_dir = "./output"
        self.databases = {
            "sso": {
                "ip": "xxxxxx",
                "database": "sso",
                "username": "xxxx",
                "password": "xxxx"
            }
        }

    def get_all_input_files(self):
        files = os.listdir(r'./input')
        # file_paths = []
        # for file in files:
        #     file_paths.append(self.input_dir + "/" + file)

        return files

    def handle_sql_log(self, project, database, lines):
        sql_lines = []
        row_count = 1
        database_info = self.databases.get(database)
        conn = connect(host=database_info.get("ip"),
                       port=3306,
                       user=database_info.get("username"),
                       password=database_info.get("password"),
                       database=database_info.get("database"),
                       charset='utf8mb4')

        for index, line in enumerate(lines):
            if line.startswith("--"):
                continue

            current_sql = line.replace("\n", "")
            execute_info = self.execute_sql_and_get_execute_time(conn, database, current_sql)

            tables = extract_query_sql_table_names(current_sql)
            real_rows = ""
            for table in tables:
                total_rows = count_rows(conn, table)
                real_rows += f"{table}:{total_rows}行 "

            sql_line = {
                "row_count": row_count,
                "sql_description": "",
                "sql": current_sql,
                "expect_rows": ",".join(tables),
                "real_rows": real_rows,
                "execute_time": execute_info["execute_time"],
                "execute_rows": execute_info["execute_rows"],
                "index_has_work": execute_info["index_has_work"],
                "project": project,
                "project": project,
                "database": database
            }

            sql_lines.append(sql_line)
            row_count += 1

        conn.close()
        return sql_lines

    def execute_sql_and_get_execute_time(self, conn, database, sql):
        print(f"==================> {database}库正在执行SQL: {sql}")
        # 记录开始时间
        try:
            cs = conn.cursor()  # 获取光标

            start_time = time.time()
            cs.execute(sql)
            rows = cs.fetchall()
            # 记录结束时间
            end_time = time.time()
            # 计算执行时间
            execution_time = end_time - start_time
            conn.commit()
            print(f"======>{database}库共花费{execution_time:.6f}秒执行完毕,{sql}")
        except Exception as e:
            print(e)
            return {"execute_rows": "", "execute_time": "", "index_has_work": ""}

        index_has_work = check_index_usage(conn, sql)
        return {"execute_rows": len(rows), "execute_time": f"{execution_time:.6f} 秒",
                "index_has_work": "是" if index_has_work else "否"}

    def handle_log_file(self, filename):

        with open(self.input_dir + "/" + filename, "r", encoding="utf-8") as file:
            lines = file.readlines()

        pre_filename = filename.split(".")[0]
        with open(self.output_dir + "/" + pre_filename + ".csv", "w", newline='', encoding='utf-8-sig') as f:
            writer = csv.writer(f,  quoting=csv.QUOTE_MINIMAL)
            csv_title = ["序号", "SQL功能描述", "SQL", "预估业务数据量", "实际测试数据量", "执行时间", "执行结果",
                         "索引是否生效", "所属项目", "所在库"]
            writer.writerow(csv_title)
            info = pre_filename.split("_in_")
            project_name = info[0]
            database_name = info[1].split("_")[0]
            sql_lines = self.handle_sql_log(project_name, database_name, lines)
            for sql_line in sql_lines:
                write_line = [sql_line["row_count"],
                              sql_line["sql_description"],
                              sql_line["sql"],
                              sql_line["expect_rows"],
                              sql_line["real_rows"],
                              sql_line["execute_time"],
                              sql_line["execute_rows"],
                              sql_line["index_has_work"],
                              sql_line["project"],
                              sql_line["database"]]
                writer.writerow(write_line)

    def do_work(self):
        files = self.get_all_input_files()
        for file in files:
            self.handle_log_file(file)


if __name__ == '__main__':
    sql_speed_test = SqlSpeedTest()
    sql_speed_test.do_work()

写在最后

编程精选网(www.codehuber.com),程序员的终身学习网站已上线!

如果这篇【文章】有帮助到你,希望可以给【JavaGPT】点个赞👍,创作不易,如果有对【后端技术】、【前端领域】感兴趣的小可爱,也欢迎关注❤️❤️❤️ 【JavaGPT】❤️❤️❤️,我将会给你带来巨大的【收获与惊喜】💝💝💝!

本文由博客一文多发平台 OpenWrite 发布!

这篇关于Python实现Java mybatis-plus 产生的SQL自动化测试SQL速度和判断SQL是否走索引的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!