在深度学习研究早期,人们总是担心优化算法会困在极差的局部最优,不过随着深度学习理论不断发展,对局部最优的理解也发生了改变。向展示一下现在怎么看待局部最优以及深度学习中的优化问题。
这是曾经人们在想到局部最优时脑海里会出现的图,也许想优化一些参数,把它们称之为\(W_{1}\)和\(W_{2}\),平面的高度就是损失函数。在图中似乎各处都分布着局部最优。梯度下降法或者某个算法可能困在一个局部最优中,而不会抵达全局最优。如果要作图计算一个数字,比如说这两个维度,就容易出现有多个不同局部最优的图,而这些低维的图曾经影响了的理解,但是这些理解并不正确。事实上,如果要创建一个神经网络,通常梯度为零的点并不是这个图中的局部最优点,实际上成本函数的零梯度点,通常是鞍点。
也就是在这个点,这里是\(W_{1}\)和\(W_{2}\),高度即成本函数\(J\)的值。
但是一个具有高维度空间的函数,如果梯度为0,那么在每个方向,它可能是凸函数,也可能是凹函数。如果在2万维空间中,那么想要得到局部最优,所有的2万个方向都需要是这样,但发生的机率也许很小,也许是\(2^{-20000}\),更有可能遇到有些方向的曲线会这样向上弯曲,另一些方向曲线向下弯,而不是所有的都向上弯曲,因此在高维度空间,更可能碰到鞍点。
就像下面的这种:
而不会碰到局部最优。至于为什么会把一个曲面叫做鞍点,想象一下,就像是放在马背上的马鞍一样,如果这是马,这是马的头,这就是马的眼睛,画得不好请多包涵,然后就是骑马的人,要坐在马鞍上,因此这里的这个点,导数为0的点,这个点叫做鞍点。想那确实是坐在马鞍上的那个点,而这里导数为0。
所以从深度学习历史中学到的一课就是,对低维度空间的大部分直觉,比如可以画出上面的图,并不能应用到高维度空间中。适用于其它算法,因为如果有2万个参数,那么\(J\)函数有2万个维度向量,更可能遇到鞍点,而不是局部最优点。
如果局部最优不是问题,那么问题是什么?结果是平稳段会减缓学习,平稳段是一块区域,其中导数长时间接近于0,如果在此处,梯度会从曲面从从上向下下降,因为梯度等于或接近0,曲面很平坦,得花上很长时间慢慢抵达平稳段的这个点,因为左边或右边的随机扰动。
可以沿着这段长坡走,直到这里,然后走出平稳段。
所以此篇博客的要点是,首先,不太可能困在极差的局部最优中,条件是在训练较大的神经网络,存在大量参数,并且成本函数\(J\)被定义在较高的维度空间。
第二点,平稳段是一个问题,这样使得学习十分缓慢,这也是像Momentum或是RMSprop,Adam这样的算法,能够加速学习算法的地方。在这些情况下,更成熟的优化算法,如Adam算法,能够加快速度,让尽早往下走出平稳段。
因为的网络要解决优化问题,说实话,要面临如此之高的维度空间,觉得没有人有那么好的直觉,知道这些空间长什么样,而且对它们的理解还在不断发展,不过希望这一点能够让更好地理解优化算法所面临的问题。