Spring Boot 3.2 于 2023 年 11 月大张旗鼓地发布,标志着 Java 开发领域的一个关键时刻。这一突破性的版本引入了一系列革命性的功能,包括:
其中,虚拟线程是最近 Java 版本中引入的最具变革性的特性之一。正如官方文件所述:虚拟线程是轻量级线程,可减少编写、维护和调试高吞吐量并发应用程序的工作量。线程是可以调度的最小处理单元。它与其他此类单位同时运行,并且在很大程度上独立于其他此类单元运行。它是 java.lang.Thread 的一个实例。有两种线程:平台线程和虚拟线程。平台线程是作为操作系统 (OS) 线程的瘦包装器实现的。平台线程在其底层操作系统线程上运行 Java 代码,平台线程在平台线程的整个生命周期内捕获其操作系统线程。因此,可用平台线程数限制为操作系统线程数。与平台线程一样,虚拟线程也是 java.lang.Thread 的实例。但是,虚拟线程不绑定到特定的操作系统线程。虚拟线程仍在操作系统线程上运行代码。但是,当在虚拟线程中运行的代码调用阻塞 I/O 操作时,Java 运行时会挂起虚拟线程,直到它可以恢复为止。与挂起的虚拟线程关联的操作系统线程现在可以*地对其他虚拟线程执行操作。虚拟线程适用于运行大部分时间被阻塞的任务,通常等待 I/O 操作完成。但是,它们不适用于长时间运行的 CPU 密集型操作。
虽然人们普遍认为虚拟线程在 I/O 密集型方案中表现出色,但它们在 CPU 密集型任务中的性能仍然是一个问号。本系列文章深入探讨了虚拟线程在各种用例中的潜在优势,从基本的“hello world”到静态文件服务(I/O 密集型)、QR 码生成(CPU 密集型)和多部分/表单数据处理(混合工作负载)等实际应用。
在本系列的开头文章中,我们已经了解了虚拟线程与物理线程相比在最简单(且不切实际)的 hello world 情况下的性能。物理线程和虚拟线程之间几乎没有任何性能或资源使用差异。在本文中,我们将更加“实用”,并针对静态文件服务器情况进行比较。这绝对是一个常见且“真实世界”的案例。让我们看看这次我们发现了什么。
如果大家正在做Spring Boot 2.3升级Spring 3.2,这里顺手给大家推荐Spring Boot 2.x 到 3.2 的升级指南。
所有测试均在配备 16G RAM、8 个物理内核和 4 个效率内核的 MacBook Pro M2 上执行。测试工具是 Bombardier,它是更快的 HTTP 负载测试器之一(用 Go 编写)。
软件版本为:
除了主 Java 类之外,不需要编写任何 Java 文件,静态文件服务器只能通过配置就能发挥作用。
application.properties
文件如下:
server.port=3000 spring.mvc.static-path-pattern=/static/** spring.web.resources.static-locations=file:/Users/mayankc/Work/source/perfComparisons/static/
使用虚拟线程时,我们将通过添加以下行来启用它们:
spring.threads.virtual.enabled=true
pom.xml
内容:
<parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>3.2.1</version> <relativePath/> </parent> <groupId>com.example</groupId> <artifactId>demo</artifactId> <version>0.0.1-SNAPSHOT</version> <name>demo</name> <description>Demo project for Spring Boot</description> <properties> <java.version>21</java.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> </dependencies>
大小完全相同但数据不同的 100K 文件被放置在静态资源目录中。每个文件大小正好是 102400 字节。
文件的命名范围为 1 到 100000。
使用 Bombardier 的修改版本,为每次运行生成随机请求 URL: http://localhost:3000/static/<file-name>
为了确保结果一致,每个测试在开始数据收集之前都会经历 5K 请求预热阶段。
然后,在不同范围的并发连接级别(50、100 和 300)中仔细记录测量结果,每个级别都承受 500 万个请求工作负载。
除了简单地跟踪原始速度之外,我们还将采用详细的指标框架来捕获延迟分布(最小值、百分位数、最大值)和吞吐量(每秒请求数)。
CPU 和内存的资源使用情况监控将补充此分析,从而提供不同工作负载下系统性能的全面了解。
结果以图表形式呈现如下:
对静态文件服务的分析表明,物理线程在性能和资源效率方面略胜一筹(与我们的预期相反)。
不过,这种受 I/O 限制的场景可能并不是充分发挥虚拟线程潜力的理想场所。涉及数据库交互的任务可能会显示出更多令人信服的优势。也许负载不足以让虚拟线程发挥出最大的作用。为了找出答案,我们将在接下来的文章中介绍 URL短链(数据库驱动)、二维码生成(CPU受限)和混合工作负载场景(如表单数据处理),旨在揭示虚拟线程真正出类拔萃的案例。
欢迎关注我的公众号:程序猿DD。第一时间了解前沿行业消息、分享深度技术干货、获取优质学习资源