LASSO
(L
east A
bsolute S
hrinkage and S
election O
perator)回归模型一般都是用英文缩写表示,
硬要翻译的话,可翻译为 最小绝对收缩和选择算子。
它是一种线性回归模型的扩展,其主要目标是解决高维数据中的特征选择和正则化问题。
在LASSO
中,通过使用L1正则化项,它能够在回归系数中引入稀疏性,
也就是允许某些系数在优化过程中缩减为零,从而实现特征的选择。
与岭回归不同的是,LASSO
的损失函数一般定义为:\(L(w) = (y-wX)^2+\lambda\parallel w\parallel_1\)
其中 \(\lambda\parallel w\parallel_1\),也就是 L1正则化项(岭回归中用的是 L2正则化项)。
模型训练的过程就是寻找让损失函数\(L(w)\)最小的参数\(w\)。
也就等价于:\(\begin{align}
& arg\ min(y-wX)^2 \\
& s.t. \sum |w_{ij}| < s
\end{align}\)
这两个公式表示,在满足约束条件 \(\sum |w_{ij}| < s\)的情况下,计算 \((y-wX)^2\)的最小值。
相比于岭回归模型,LASSO
回归模型不仅对于共线性数据集友好,
对于高维数据的数据集,也有不错的性能表现。
它通过将不重要的特征的系数压缩为零,帮助我们选择最重要的特征,从而提高模型的预测准确性和可解释性。
下面我们模拟创建一些高维数据,创建一个特征数比样本数还多的样本数据集。
from sklearn.datasets import make_regression X, y = make_regression(n_samples=80, n_features=100, noise=10)
这个数据集中,只有80
个样本,每个样本却有100
个特征,并且噪声也设置的很大(noise=10
)。
第一步,分割训练集和测试集。
from sklearn.model_selection import train_test_split # 分割训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
用scikit-learn
中的LASSO
模型来训练:
from sklearn.linear_model import Lasso # 初始化LASSO线性模型 reg = Lasso() # 训练模型 reg.fit(X_train, y_train)
这里使用的 Lasso()
的默认参数来训练模型,它的主要参数包括:
alpha
越大,模型越简单,但过大的alpha
可能会导致模型欠拟合;alpha
越小,模型越复杂,但过小的alpha
可能会导致模型过拟合。默认值为1.0。False
,则不计算b值。默认值为True。True
,则在模型训练之前将数据归一化。默认值为False。X
。如果设为True
,则在训练过程中复制X
。默认值为True。True
,则使用前一次的解作为本次迭代的起始点。默认值为False。True
,则强制系数为正。默认值为False。cyclic
”和“random
”两种选择)。默认值为“cyclic
”,即循环选择。最后验证模型的训练效果:
from sklearn import metrics y_pred = reg.predict(X_test) mse = metrics.mean_squared_error(y_test, y_pred) r2 = metrics.r2_score(y_test, y_pred) m_error = metrics.median_absolute_error(y_test, y_pred) print("均方误差:{}".format(mse)) print("复相关系数:{}".format(r2)) print("中位数绝对误差:{}".format(m_error)) # 运行结果 均方误差:441.07830708712186 复相关系数:0.9838880665687711 中位数绝对误差:11.643348614829785
误差看上去不小,因为这次实际生成的样本,不仅数量小(80
件)且噪声大(noise=10
)。
单独看LASSO
模型的训练结果,看不出其处理高维数据的优势。
同样用上面分割好的训练集和测试集,来看看岭回归模型的拟合效果。
from sklearn.linear_model import Ridge # from sklearn.model_selection import train_test_split mse, r2, m_error = 0.0, 0.0, 0.0 # 初始化岭回归线性模型 reg = Ridge() # 训练模型 reg.fit(X_train, y_train) y_pred = reg.predict(X_test) mse = metrics.mean_squared_error(y_test, y_pred) r2 = metrics.r2_score(y_test, y_pred) m_error = metrics.median_absolute_error(y_test, y_pred) print("均方误差:{}".format(mse)) print("复相关系数:{}".format(r2)) print("中位数绝对误差:{}".format(m_error)) # 运行结果 均方误差:6315.046844910431 复相关系数:0.7693207470296398 中位数绝对误差:60.65140692273637
对于高维数据,可以看出,岭回归模型的误差 远远大于 LASSO模型。
同样用上面分割好的训练集和测试集,再来看看线性模型(最小二乘法)的拟合效果。
from sklearn.linear_model import LinearRegression mse, r2, m_error = 0.0, 0.0, 0.0 # 初始化最小二乘法线性模型 reg = LinearRegression() # 训练模型 reg.fit(X_train, y_train) y_pred = reg.predict(X_test) mse = metrics.mean_squared_error(y_test, y_pred) r2 = metrics.r2_score(y_test, y_pred) m_error = metrics.median_absolute_error(y_test, y_pred) print("均方误差:{}".format(mse)) print("复相关系数:{}".format(r2)) print("中位数绝对误差:{}".format(m_error)) # 运行结果 均方误差:5912.442445894787 复相关系数:0.7840272859181612 中位数绝对误差:62.89225147465376
可以看出,线性模型的训练效果和岭回归模型差不多,但是都远远不如LASSO模型。
总的来说,LASSO
回归模型是一种流行的线性回归扩展,具有一些显著的优势和劣势。
比如,在特征选择上,LASSO
通过将某些系数压缩为零,能够有效地进行特征选择,这在高维数据集中特别有用。
此外,LASSO
可以作为正则化工具,有助于防止过拟合。
不过,LASSO
会假设特征是线性相关的,对于非线性关系的数据,效果可能不佳。
而且,如果数据存在复杂模式或噪声,LASSO
可能会过度拟合这些模式。