代码地址:https://github.com/taishan1994/sentencepiece_chinese_bpe
目前,大语言模型呈爆发式的增长,其中,基于llama家族的模型占据了半壁江山。而原始的llama模型对中文的支持不太友好,接下来本文将讲解如何去扩充vocab里面的词以对中文进行token化。
对斗破苍穹语料进行预处理,每一行为一句或多句话。
with open("data/《斗破苍穹》.txt", "r", encoding="utf-8") as fp: data = fp.read().strip().split("\n") sentences = [] for d in data: d = d.strip() if "===" in d or len(d) == 0 or d == "《斗破苍穹》来自:": continue sentences.append(d) with open("data/corpus.txt", "w", encoding="utf-8") as fp: fp.write("\n".join(sentences))
最终得到corpus.txt。
首先,我们需要去构建中文的词库。一般的,目前比较主流的是使用sentencepiece训练中文词库。安装指令也很简单:pip install sentencepiece
。然后,我们准备好语料,这里我们使用的语料是斗破苍穹小说。
直接看代码:
import sentencepiece as spm spm.SentencePieceTrainer.train( input='data/corpus.txt', model_prefix='tokenizer', vocab_size=50000, user_defined_symbols=['foo', 'bar'], character_coverage=1.0, model_type="bpe", )
这里讲下每个参数的作用:
运行后会得到tokenizer.model和tokenizer.vocab两个文件。
我们来看看tokenizer.vocab里面是什么:
<unk> 0 <s> 0 </s> 0 foo 0 bar 0 萧炎 -0 .. -1 ▁“ -2 也是 -3 便是 -4 了一 -5 。” -6
除了一些特殊符号外,还有我们自定义的foo和bar,其余的一些词是BPE训练得到,具体什么是BPE算法这里不作展开了。
直接看代码:
import os os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" from transformers import LlamaTokenizer from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model import sentencepiece as spm from tokenization import ChineseTokenizer chinese_sp_model_file = "sentencepisece_tokenizer/tokenizer.model" # load chinese_sp_model = spm.SentencePieceProcessor() chinese_sp_model.Load(chinese_sp_model_file) chinese_spm = sp_pb2_model.ModelProto() chinese_spm.ParseFromString(chinese_sp_model.serialized_model_proto()) ## Save output_dir = './transformers_tokenizer/chinese/' os.makedirs(output_dir, exist_ok=True) with open(output_dir + 'chinese.model', 'wb') as f: f.write(chinese_spm.SerializeToString()) tokenizer = ChineseTokenizer(vocab_file=output_dir + 'chinese.model') tokenizer.save_pretrained(output_dir) print(f"Chinese tokenizer has been saved to {output_dir}") # Test chinese_tokenizer = ChineseTokenizer.from_pretrained(output_dir) print(tokenizer.all_special_tokens) print(tokenizer.all_special_ids) print(tokenizer.special_tokens_map) text = '''白日依山尽,黄河入海流。欲穷千里目,更上一层楼。 The primary use of LLaMA is research on large language models, including''' print("Test text:\n", text) print(f"Tokenized by Chinese-LLaMA tokenizer:{chinese_tokenizer.tokenize(text)}")
结果:
Chinese tokenizer has been saved to ./transformers_tokenizer/chinese/ ['<s>', '</s>', '<unk>'] [1, 2, 0] {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'} Test text: 白日依山尽,黄河入海流。欲穷千里目,更上一层楼。 The primary use of LLaMA is research on large language models, including Tokenized by Chinese-LLaMA tokenizer:['▁', '白日', '依', '山', '尽', ',', '黄', '河', '入', '海', '流', '。', '欲', '穷', '千里', '目', ',', '更', '上一层', '楼', '。', '▁', 'T', 'h', 'e', '▁', 'p', 'r', 'i', 'm', 'a', 'r', 'y', '▁', 'u', 's', 'e', '▁', 'o', 'f', '▁', 'LL', 'a', 'MA', '▁i', 's', '▁', 'r', 'e', 's', 'e', 'a', 'r', 'ch', '▁', 'o', 'n', '▁', 'l', 'a', 'r', 'g', 'e', '▁', 'l', 'an', 'g', 'u', 'a', 'g', 'e', '▁', 'm', 'o', 'd', 'e', 'l', 's', ',', '▁i', 'n', 'c', 'lu', 'd', 'i', 'ng']
其中ChineseTokenizer这里参考了llama模型里面使用的方法,并稍微做些修改:
# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for LLaMA.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} # PRETRAINED_VOCAB_FILES_MAP = { # "vocab_file": { # "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model", # }, # "tokenizer_file": { # "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json", # }, # } # PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { # "hf-internal-testing/llama-tokenizer": 2048, # } class ChineseTokenizer(PreTrainedTokenizer): """ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. Args: vocab_file (`str`): Path to the vocabulary file. """ vocab_files_names = VOCAB_FILES_NAMES # pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP # max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, unk_token="<unk>", bos_token="<s>", eos_token="</s>", pad_token=None, sp_model_kwargs: Optional[Dict[str, Any]] = None, add_bos_token=True, add_eos_token=False, clean_up_tokenization_spaces=False, **kwargs, ): self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, sp_model_kwargs=self.sp_model_kwargs, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) self.vocab_file = vocab_file self.add_bos_token = add_bos_token self.add_eos_token = add_eos_token self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) @property def vocab_size(self): """Returns vocab size""" return self.sp_model.get_piece_size() def get_vocab(self): """Returns vocab as a dict""" vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): """Returns a tokenized string.""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for i, token in enumerate(tokens): # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special and i != 0: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. Returns: `Tuple(str)`: Paths to the files saved. """ if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) bos_token_id = [1] if self.add_bos_token else [] eos_token_id = [1] if self.add_eos_token else [] if token_ids_1 is None: return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id return ( bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id ) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` if token_ids_1 is None, only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) if token_ids_1 is not None: output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) return output
不难发现其实里面使用了一些sentencepiece里面的函数。
直接看代码:
import os os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" from transformers import LlamaTokenizer from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model import sentencepiece as spm llama_tokenizer_dir = "transformers_tokenizer/llama/tokenizer.model" chinese_sp_model_file = "sentencepisece_tokenizer/tokenizer.model" # load llama_tokenizer = LlamaTokenizer.from_pretrained(llama_tokenizer_dir) chinese_sp_model = spm.SentencePieceProcessor() chinese_sp_model.Load(chinese_sp_model_file) llama_spm = sp_pb2_model.ModelProto() llama_spm.ParseFromString(llama_tokenizer.sp_model.serialized_model_proto()) chinese_spm = sp_pb2_model.ModelProto() chinese_spm.ParseFromString(chinese_sp_model.serialized_model_proto()) # print number of tokens print(len(llama_tokenizer), len(chinese_sp_model)) print(llama_tokenizer.all_special_tokens) print(llama_tokenizer.all_special_ids) print(llama_tokenizer.special_tokens_map) ## Add Chinese tokens to LLaMA tokenizer llama_spm_tokens_set = set(p.piece for p in llama_spm.pieces) print(len(llama_spm_tokens_set)) print(f"Before:{len(llama_spm_tokens_set)}") for p in chinese_spm.pieces: piece = p.piece if piece not in llama_spm_tokens_set: new_p = sp_pb2_model.ModelProto().SentencePiece() new_p.piece = piece new_p.score = 0 llama_spm.pieces.append(new_p) print(f"New model pieces: {len(llama_spm.pieces)}") ## Save output_sp_dir = 'transformers_tokenizer/llama_chinese' output_hf_dir = 'transformers_tokenizer/llama_chinese' # the path to save Chinese-LLaMA tokenizer os.makedirs(output_sp_dir, exist_ok=True) with open(output_sp_dir + '/chinese_llama.model', 'wb') as f: f.write(llama_spm.SerializeToString()) tokenizer = LlamaTokenizer(vocab_file=output_sp_dir + '/chinese_llama.model') tokenizer.save_pretrained(output_hf_dir) print(f"Chinese-LLaMA tokenizer has been saved to {output_hf_dir}") # Test llama_tokenizer = LlamaTokenizer.from_pretrained(llama_tokenizer_dir) chinese_llama_tokenizer = LlamaTokenizer.from_pretrained(output_hf_dir) print(tokenizer.all_special_tokens) print(tokenizer.all_special_ids) print(tokenizer.special_tokens_map) text = '''白日依山尽,黄河入海流。欲穷千里目,更上一层楼。 The primary use of LLaMA is research on large language models, including''' print("Test text:\n", text) print(f"Tokenized by LLaMA tokenizer:{llama_tokenizer.tokenize(text)}") print(f"Tokenized by Chinese-LLaMA tokenizer:{chinese_llama_tokenizer.tokenize(text)}")
核心部分是这一块:
for p in chinese_spm.pieces: piece = p.piece if piece not in llama_spm_tokens_set: new_p = sp_pb2_model.ModelProto().SentencePiece() new_p.piece = piece new_p.score = 0 llama_spm.pieces.append(new_p)
也就是将原始词表中没有的新加入进去。
最后看一下结果:
32000 50000 ['<s>', '</s>', '<unk>'] [1, 2, 0] {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'} Before:32000 New model pieces: 81163 Chinese-LLaMA tokenizer has been saved to transformers_tokenizer/llama_chinese ['<s>', '</s>', '<unk>'] [1, 2, 0] {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>'} Test text: 白日依山尽,黄河入海流。欲穷千里目,更上一层楼。 The primary use of LLaMA is research on large language models, including Tokenized by LLaMA tokenizer:['▁', '白', '日', '<0xE4>', '<0xBE>', '<0x9D>', '山', '<0xE5>', '<0xB0>', '<0xBD>', ',', '黄', '河', '入', '海', '流', '。', '<0xE6>', '<0xAC>', '<0xB2>', '<0xE7>', '<0xA9>', '<0xB7>', '千', '里', '目', ',', '更', '上', '一', '<0xE5>', '<0xB1>', '<0x82>', '<0xE6>', '<0xA5>', '<0xBC>', '。', '<0x0A>', 'The', '▁primary', '▁use', '▁of', '▁L', 'La', 'MA', '▁is', '▁research', '▁on', '▁large', '▁language', '▁models', ',', '▁including'] Tokenized by Chinese-LLaMA tokenizer:['▁白', '日', '依', '山', '尽', ',', '黄', '河', '入', '海', '流', '。', '欲', '穷', '千里', '目', ',', '更', '上一层', '楼', '。', '<0x0A>', 'The', '▁primary', '▁use', '▁of', '▁L', 'La', 'MA', '▁is', '▁research', '▁on', '▁large', '▁language', '▁models', ',', '▁including']
会发现再加入了我们定义的词表后确实能够对中文进行分词了。
如果我们重新从头开始训练,那么其实使用起来很简单:
config = AutoConfig.from_pretrained(...) tokenizer = LlamaTokenizer.from_pretrained(...) model = LlamaForCausalLM.from_pretrained(..., config=config) model_vocab_size = model.get_output_embeddings().weight.size(0) model.resize_token_embeddings(len(tokenizer))
但是如果我们想要保留原始模型embedding的参数,那么我们可以这么做:
def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
具体怎么做可以参考一下这个:https://github.com/yangjianxin1/LLMPruner
到这里为止,我们已经学会了:
https://github.com/ymcui/Chinese-LLaMA-Alpaca
https://github.com/yangjianxin1/LLMPruner
https://github.com/huggingface/transformers