A reusable synchronization barrier, similar in functionality to {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and {@link java.util.concurrent.CountDownLatch CountDownLatch} but supporting more flexible usage.
JDK中对Phaser的定义时,一个可重用的同步栅栏。其作用相当于CyclicBarrier和CountDownLatch的结合体,但是支持更加灵活的使用
Phaser的底层实现依旧依赖于CAS的自旋锁操作,通过cas保证原子性的操作
import java.util.List; import java.util.concurrent.Phaser; public class PhaserDemo { void runTasks(List<Runnable> tasks) { final Phaser phaser = new Phaser(1); // "1" to register self // create and start threads for (final Runnable task : tasks) { phaser.register(); new Thread() { public void run() { phaser.arriveAndAwaitAdvance(); // await all creation task.run(); } }.start(); } } void startTasks(List<Runnable> tasks, int iterations) { Phaser phaser = new Phaser() { protected boolean onAdvance(int phase, int registeredParties) { return phase >= iterations - 1 || registeredParties == 0; } }; phaser.register(); for (Runnable task : tasks) { phaser.register(); new Thread(() -> { do { task.run(); phaser.arriveAndAwaitAdvance(); } while (!phaser.isTerminated()); }).start(); } // allow threads to proceed; don't wait for them phaser.arriveAndDeregister(); } }
public class Phaser { private volatile long state;//采用long 64 位表示state变量。使用位操作来表示,cas单原子性变量保证多变量的原子性 private static final int MAX_PARTIES = 0xffff; private static final int MAX_PHASE = Integer.MAX_VALUE; private static final int PARTIES_SHIFT = 16; private static final int PHASE_SHIFT = 32; private static final int UNARRIVED_MASK = 0xffff; // to mask ints private static final long PARTIES_MASK = 0xffff0000L; // to mask longs private static final long COUNTS_MASK = 0xffffffffL; private static final long TERMINATION_BIT = 1L << 63; // some special values private static final int ONE_ARRIVAL = 1; private static final int ONE_PARTY = 1 << PARTIES_SHIFT; private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY; private static final int EMPTY = 1; // The following unpacking methods are usually manually inlined private static int unarrivedOf(long s) { int counts = (int)s; return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK); } private static int partiesOf(long s) { return (int)s >>> PARTIES_SHIFT; } private static int phaseOf(long s) { return (int)(s >>> PHASE_SHIFT); } private static int arrivedOf(long s) { int counts = (int)s; return (counts == EMPTY) ? 0 : (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK); } /** * The parent of this phaser, or null if none */ private final Phaser parent; /** * The root of phaser tree. Equals this if not in a tree. */ private final Phaser root; /** * Heads of Treiber stacks for waiting threads. To eliminate * contention when releasing some threads while adding others, we * use two of them, alternating across even and odd phases. * Subphasers share queues with root to speed up releases. */ private final AtomicReference<QNode> evenQ; private final AtomicReference<QNode> oddQ;
static final class QNode implements ForkJoinPool.ManagedBlocker { final Phaser phaser; final int phase; final boolean interruptible; final boolean timed; boolean wasInterrupted; long nanos; final long deadline; volatile Thread thread; // nulled to cancel wait QNode next; QNode(Phaser phaser, int phase, boolean interruptible, boolean timed, long nanos) { this.phaser = phaser; this.phase = phase; this.interruptible = interruptible; this.nanos = nanos; this.timed = timed; this.deadline = timed ? System.nanoTime() + nanos : 0L; thread = Thread.currentThread(); }
public Phaser(int parties) { this(null, parties); } public Phaser(Phaser parent) { this(parent, 0); } //最终都是走这个构造器方法 public Phaser(Phaser parent, int parties) { if (parties >>> PARTIES_SHIFT != 0)// throw new IllegalArgumentException("Illegal number of parties"); int phase = 0; this.parent = parent; if (parent != null) {//判断父阶段是否为空。如果有父阶段,子阶段的行为由父阶段控制,调用父阶段去处理 final Phaser root = parent.root;//root为父阶段 this.root = root; this.evenQ = root.evenQ;//使用父阶段的偶队列 this.oddQ = root.oddQ;//使用父阶段的奇队列 if (parties != 0)//如果父阶段不为空 phase = parent.doRegister(1);//将当前阶段注册到父阶段中 } else {//表示没有父阶段 this.root = this; this.evenQ = new AtomicReference<QNode>(); this.oddQ = new AtomicReference<QNode>(); } this.state = (parties == 0) ? (long)EMPTY : ((long)phase << PHASE_SHIFT) | //64位中高32位表示阶段数,也即phase的数量 ((long)parties << PARTIES_SHIFT) | //64位中低32位的高16位表示参与者的数量 ((long)parties);//64位中低32位的低16位表示未完成的数量 }
public int register() { return doRegister(1); } private int doRegister(int registrations) { // adjustment to state long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;//对当前state变量的参与数量和未完成数量都加 1 final Phaser parent = this.parent;//如果有父阶段,获取父阶段 int phase; for (;;) { long s = (parent == null) ? state : reconcileState();//拿到state的值 int counts = (int)s;//将64位取低32位的值 int parties = counts >>> PARTIES_SHIFT;//右移16位,取高16位的值,也即parties的数量 int unarrived = counts & UNARRIVED_MASK;//获取低16位的数值,也即未到达的数量 if (registrations > MAX_PARTIES - parties)//越界判断 throw new IllegalStateException(badRegister(s)); phase = (int)(s >>> PHASE_SHIFT);//获取阶段数 if (phase < 0)//阶段数为0,表示已经超过阶段数了,不需要继续处理了 break; if (counts != EMPTY) { // not 1st registration if (parent == null || reconcileState() == s) { if (unarrived == 0) // wait out advance 如果未完成数量等于0 root.internalAwaitAdvance(phase, null);//阻塞等待或者等到下一阶段推进 else if (UNSAFE.compareAndSwapLong(this, stateOffset,//将当前需要参与的数量放到state变量中 s, s + adjust)) break;//退出循环 } } else if (parent == null) {//没有父阶段或自己就是父阶段 long next = ((long)phase << PHASE_SHIFT) | adjust; //阶段数量增加 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))//cas尝试将阶段数量增加,成功就腿很粗 break; } else { synchronized (this) { //走到这里表示,自身属于子阶段,需要接受父阶段的调度 if (state == s) { //重新检测state变量是否改变 phase = parent.doRegister(1);//向父阶段注册 if (phase < 0)//阶段数已经超过了最大阶段数 break; //while循环,设置state的中phase阶段数直至成功 while (!UNSAFE.compareAndSwapLong (this, stateOffset, s, ((long)phase << PHASE_SHIFT) | adjust)) { s = state; phase = (int)(root.state >>> PHASE_SHIFT); // assert (int)s == EMPTY; } break; } } } } return phase; }
//只要使用在有父子阶段的存在的情况下 private long reconcileState() { final Phaser root = this.root;//获取到当前阶段 long s = state;//取得当前state if (root != this) {//如果root不是当前阶段 int phase, p; // CAS to root phase with current parties, tripping unarrived while ((phase = (int)(root.state >>> PHASE_SHIFT)) != //phase等于root的阶段数 (int)(s >>> PHASE_SHIFT) &&//root的阶段数不等于当前阶段state变量的阶段数 !UNSAFE.compareAndSwapLong// (this, stateOffset, s, s = (((long)phase << PHASE_SHIFT) | //root的阶段数 ((phase < 0) ? (s & COUNTS_MASK) : //如果阶段数已经超了,直接取低32位 (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY : //获取到s对应的parties数量,复制给p ((s & PARTIES_MASK) | p)))))) s = state; } return s; }
public int arriveAndAwaitAdvance() { // Specialization of doArrive+awaitAdvance eliminating some reads/paths final Phaser root = this.root;//获取当前阶段 for (;;) { long s = (root == this) ? state : reconcileState();//获取到state的状态,如果有父阶段调用reconcileState int phase = (int)(s >>> PHASE_SHIFT);//等到当前阶段数 if (phase < 0)//阶段数超了,直接返回 return phase; int counts = (int)s;//获取state的低32位 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);//获取到未到达的参与者数量 if (unarrived <= 0)//未到达的参与者数量越界检查 throw new IllegalStateException(badArrive(s)); if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= ONE_ARRIVAL)) {//cas将未到达的数量减1 if (unarrived > 1)//如果未到达的数量大于1 return root.internalAwaitAdvance(phase, null);//调用父阶段控制其去睡眠等待 if (root != this)//如果this不是父阶段 return parent.arriveAndAwaitAdvance();//由父类处理,将到达线程数减1或滚动到下一阶段 long n = s & PARTIES_MASK; // base of next state//获得参与者parties数量 int nextUnarrived = (int)n >>> PARTIES_SHIFT;//获得下一个阶段参与者的数量 if (onAdvance(phase, nextUnarrived))//调用onAdvance会掉方法 n |= TERMINATION_BIT;//TERMINATION_BIT:1<<63,标识阶段数结束 else if (nextUnarrived == 0)//如果下一个阶段参与者为0 n |= EMPTY;//异或上EMPTY else n |= nextUnarrived;//否则将低32位的低16位置为下一阶段参与者的数量,表示未完成的数量等于下一个阶段参与者的数量 int nextPhase = (phase + 1) & MAX_PHASE;//获得下一个阶段的phase的数量 n |= (long)nextPhase << PHASE_SHIFT;//n异或上下一阶段phase的数量组合成state比那辆 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))//cas设置state变量。当前线程如果设置state变量失败,是否可以允许爆炸唤醒,不直接退出? return (int)(state >>> PHASE_SHIFT); // cas失败,返回state中的阶段数 releaseWaiters(phase);//释放等待线程 return nextPhase; } } }
private int internalAwaitAdvance(int phase, QNode node) { // assert root == this; releaseWaiters(phase-1); // ensure old queue clean 将上一个阶段等待线程唤醒,将队列清空 boolean queued = false; // true when node is enqueued int lastUnarrived = 0; // to increase spins upon change int spins = SPINS_PER_ARRIVAL;//SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8,单核CPU没有自旋的必要,浪费时间 long s; int p; while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {//判断当前阶段数是否等于phase if (node == null) { // spinning in noninterruptible mode int unarrived = (int)s & UNARRIVED_MASK;//获取未到达的参与者数量 if (unarrived != lastUnarrived &&//未到达的参与者数量不等于lastUnarrived (lastUnarrived = unarrived) < NCPU)//lastUnarrived 赋值lastUnarrived。小于CPU的核心数,证明任务很快可以调度,值得等待。但是考虑业务线程,实际中如果CPU的核心数没有大于2,其实没有自旋的必要。 spins += SPINS_PER_ARRIVAL;//增加自旋次数 boolean interrupted = Thread.interrupted();//判断中断标志位 if (interrupted || --spins < 0) { // need node to record intr //如果中断了,或者自旋次数小于0 node = new QNode(this, phase, false, false, 0L); node.wasInterrupted = interrupted;//将中断标识赋值 } } else if (node.isReleasable()) // done or aborted 判断是否已经完成,或者说中断等方式释放 break; else if (!queued) { // push onto queue 不在队列中 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ; //根据phase的奇偶性,选择队列 QNode q = node.next = head.get();//头插法 if ((q == null || q.phase == phase) && (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq queued = head.compareAndSet(q, node); } else { try { ForkJoinPool.managedBlock(node);//由于兼容forkJoin线程池,所以这里提供模板。这里进行阻塞等待 } catch (InterruptedException ie) { node.wasInterrupted = true; } } } if (node != null) {//进入这里表示,当前阶段不一致 if (node.thread != null) node.thread = null; // avoid need for unpark() //将thread置为空 if (node.wasInterrupted && !node.interruptible) //节点被中断,并且节点不可中断 Thread.currentThread().interrupt();//重置中断标志位 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)//当前阶段数量一致,也即属于同一阶段 return abortWait(phase); // possibly clean up on abort } releaseWaiters(phase);//唤醒等待的线程 return p; }
private void releaseWaiters(int phase) { QNode q; // first element of queue Thread t; // its thread AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;//根据阶段数判断是奇数队列还是偶数队列 while ((q = head.get()) != null &&//获取到头结点,如果头结点补位空 q.phase != (int)(root.state >>> PHASE_SHIFT)) {//并且当前阶段数已经滚动到下一个阶段 if (head.compareAndSet(q, q.next) &&//cas替换头结点 (t = q.thread) != null) {//如果旧的头结点不为空 q.thread = null;//将节点q的线程置为空 LockSupport.unpark(t);//唤醒节点q的线程 } } }
public int arriveAndDeregister() { return doArrive(ONE_DEREGISTER);//ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY; }
private int doArrive(int adjust) { final Phaser root = this.root;//获取当前阶段 for (;;) { long s = (root == this) ? state : reconcileState();//如果有父阶段获取父阶段的state,没有取当前阶段的state int phase = (int)(s >>> PHASE_SHIFT);//获取阶段数 if (phase < 0)//如果阶段数已经小于0,表示已经结束,直接返回 return phase; int counts = (int)s;//获取state的低32位,业绩参与者和未完成的参与者 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);//获取未到达的参与者数量EMPTY是特殊值,表示没有未到达的参与者 if (unarrived <= 0)//如果未到达的参与者小于0,非法直接抛出异常 throw new IllegalStateException(badArrive(s)); if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {//直接cas自旋,更新state变量 if (unarrived == 1) {//如果当前线程是最后一个未完成的参与者,需要做收尾工作 long n = s & PARTIES_MASK; // base of next state 获取参与者的数量 int nextUnarrived = (int)n >>> PARTIES_SHIFT;//设置未到达的参与者数量为下一个阶段的参与者数量 if (root == this) {//如果root是当前阶段 if (onAdvance(phase, nextUnarrived))//回调钩子函数 n |= TERMINATION_BIT;//置为TERMINATION状态,TERMINATION_BIT = 1L << 63;最高位符号位表示终止标志位 else if (nextUnarrived == 0)//如果下一个阶段没有参与者 n |= EMPTY;//直接或上一个EMPTY else n |= nextUnarrived;//否则直接或上下一个阶段的未达到的参与者数量 int nextPhase = (phase + 1) & MAX_PHASE;//阶段数加1 n |= (long)nextPhase << PHASE_SHIFT;//将阶段数组合到变量n中, UNSAFE.compareAndSwapLong(this, stateOffset, s, n);//cas自旋将state置为n,表示滚动到下一个阶段 releaseWaiters(phase);//释放所有等待的节点 } else if (nextUnarrived == 0) { // propagate deregistration 这里表示root有父阶段且自己已经完成 phase = parent.doArrive(ONE_DEREGISTER);//父阶段中标识自己已经完成并且将参与者数量减1,未到达的参与者也减1 UNSAFE.compareAndSwapLong(this, stateOffset,//将当前的state,case自旋,置为EMPTY s, s | EMPTY); } else phase = parent.doArrive(ONE_ARRIVAL);//当前线程不是最后一个完成的线程,将未到达的参与者数量减1即可 } return phase; } } }
到了这里,其实AQS的源码基本已经覆盖了,对于AQS的源码也应该有了清楚的认知。总结就是:一个volatile 的state变量,两个等待队列(竞争队列,条件队列),通过cas的方式保证单变量的原子性。后续将会对Exchanger以及Phaser进行源码解析,到此基本AQS已经到了一个段落了。后续观看源码时,请注意多考虑一下多线程并发时可能出现的情况,去理解doug lea写代码的思路。