目的:保留模型加载和推理部分,完成实时屏幕检测
实现思路:
1. 写一个实时截取屏幕的函数
2. 将截取的屏幕在窗口显示出来
3. 用OpenCV绘制一个窗口用来显示截取的屏幕
4. 在detect找出推理的代码,推理完成后得到中心点的xy坐标,宽高组成box
5. 在创建的OpenCV窗口用得到的推理结果绘制方框
实现效果:
import argparse import os import platform import sys from pathlib import Path import torch FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh) from utils.plots import Annotator, colors, save_one_box from utils.torch_utils import select_device, smart_inference_mode @smart_inference_mode() def run( weights=ROOT / 'yolov5s.pt', # model path or triton URL source=ROOT / 'data/video/', data=ROOT / 'data/coco128.yaml', # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride ): source = str(source) save_img = not nosave and not source.endswith('.txt') # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) screenshot = source.lower().startswith('screen') if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader bs = 1 # batch_size if webcam: view_img = check_imshow(warn=True) dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) bs = len(dataset) elif screenshot: dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt s += '%gx%g ' % im.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(f'{txt_path}.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Stream results im0 = annotator.result() if view_img: if platform.system() == 'Linux' and p not in windows: windows.append(p) cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # Print time (inference-only) LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") # Print results t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning) def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL') parser.add_argument('--source', type=str, default=ROOT / '0', help='file/dir/URL/glob/screen/1(webcam)') parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.45, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.2, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return opt def main(opt): check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt)) if __name__ == '__main__': opt = parse_opt() main(opt)
import argparse import os import platform import sys from pathlib import Path import torch FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh) from utils.plots import Annotator, colors, save_one_box from utils.torch_utils import select_device, smart_inference_mode
做了一些包的导入,定义了一些全局变量,先保留下来,没用的最后删
向下
if __name__ == '__main__': opt = parse_opt() main(opt)
从if __name__ == '__main_
_开始opt = parse_opt
就是一个获取命令行参数的函数,我们并不需要,可以删
进入main
函数
def main(opt): check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt))
check_requirements
函数检查requirements是否全都安装好了,无用,删了
进入run
函数
source = str(source) save_img = not nosave and not source.endswith('.txt') # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file) screenshot = source.lower().startswith('screen') if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
判断source的类型,即要要推理的源是什么,判断源是文件还是url还是webcam或者screenshot ,定义保存文件夹,我不需要保存,只需要实时检测屏幕,删除
继续向下,是加载模型的代码
# Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
得知加载模型需要几个参数,分别是weights, device=device, dnn=dnn, data=data, fp16=half
通过开始的形参可知:
weights=ROOT / 'yolov5s.pt'
也就是模型的名称device
通过select_device
函数得到dnn
和fp16
在run
函数里的参数都是FALSE故加载模型的代码可以改写成
def LoadModule(): device = select_device('') weights = 'yolov5s.pt' model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False) return model
继续往下读
bs = 1 # batch_size if webcam: view_img = check_imshow(warn=True) dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) bs = len(dataset) elif screenshot: dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) vid_path, vid_writer = [None] * bs, [None] * bs
这里如果是使用网络摄像头作为输入,会通过LoadStreams类加载视频流,根据图像大小和步长采样,如果使用截图作为输入,则通过LoadScreenshots加载截图,都不是则通过LoadImages类加载图片文件
这是YOLOV5提供的加载dataset的部分,我们可以添加自己的dataset,所以删掉
继续往下
# Run inference model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))
用于模型预热,传入形状为(1, 3, *imgsz)的图像进行预热操作,没用删了
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
未知作用,删了
for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
上面这段for循环用于遍历数据集中的每个图像或视频帧进行推理,在循环的开头,将路径、图像、原始图像、视频捕获对象和步长传递给path, im, im0s, vid_cap, s。推理实时屏幕只需要传一张图片,所以不存在将遍历推理,所以要进行改写,改写成
im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
这里是对 im 进行转换和推理,而改写的代码中没有im变量,则寻找im的来源for path, im, im0s, vid_cap, s in dataset:
im
来源于dataset
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
dataset
来源于LoadImages
的返回值
查看LoadImages
的函数返回值和返回值的来源
在dataloaders.py中可以看到
if self.transforms: im = self.transforms(im0) # transforms else: im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB im = np.ascontiguousarray(im) # contiguous return path, im, im0, self.cap, s
如果transforms
存在,则转换,如果transforms
不存在,则调用letterbox函数对图像im0进行缩放和填充,使其符合模型要求的图像大小,将图像的通道顺序由HWC转换为CHW,将图像的通道顺序由BGR转换为RGB,将图像转换为连续的内存布局
其中需要的参数是im0, self.img_size, stride=self.stride, auto=self.auto
im0则是未经处理的图片,img_size填640(因为模型的图片大小训练的是640),stride填64(默认参数为64),auto填True
则得到改写代码为
im = letterbox(img0, 640, stride=32, auto=True)[0] # padded resize im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB im = np.ascontiguousarray(im) # contiguous im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim pred = model(im, augment=False, visualize=False) pred = non_max_suppression(pred, conf_thres=conf_thres, iou_thres=iou_thres, classes=None, agnostic=False, max_det=1000)
继续向下
for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt s += '%gx%g ' % im.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(f'{txt_path}.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
这段代码将推理后的结果进行转换,转换为label format,成为人能看懂的格式,删去输出结果,留下写入结果中的,格式转换,删掉保存为txt文件,得到需要的box,然后自己写一个boxs=[],将结果append进去,方便在OpenCV中绘画识别方框,改写结果为
boxs=[] for i, det in enumerate(pred): # per image im0 = img0.copy() s = ' ' s += '%gx%g ' % im.shape[2:] # print string gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = img0 # for save_crop if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh) # label format box = ('%g ' * len(line)).rstrip() % line box = box.split(' ') boxs.append(box)
就此完成了推理部分的删减和重写
写成 grabscreen.py
# 文件名:grabscreen.py import cv2 import numpy as np import win32gui import win32print import win32ui import win32con import win32api import mss def grab_screen_win32(region): hwin = win32gui.GetDesktopWindow() left, top, x2, y2 = region width = x2 - left + 1 height = y2 - top + 1 hwindc = win32gui.GetWindowDC(hwin) srcdc = win32ui.CreateDCFromHandle(hwindc) memdc = srcdc.CreateCompatibleDC() bmp = win32ui.CreateBitmap() bmp.CreateCompatibleBitmap(srcdc, width, height) memdc.SelectObject(bmp) memdc.BitBlt((0, 0), (width, height), srcdc, (left, top), win32con.SRCCOPY) signedIntsArray = bmp.GetBitmapBits(True) img = np.fromstring(signedIntsArray, dtype='uint8') img.shape = (height, width, 4) srcdc.DeleteDC() memdc.DeleteDC() win32gui.ReleaseDC(hwin, hwindc) win32gui.DeleteObject(bmp.GetHandle()) return cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
通过img0 = grab_screen_win32(region=(0, 0, 1920, 1080))
来作为im的参数传入,即可让屏幕截图作为推理图片
if len(boxs): for i, det in enumerate(boxs): _, x_center, y_center, width, height = det x_center, width = re_x * float(x_center), re_x * float(width) y_center, height = re_y * float(y_center), re_y * float(height) top_left = (int(x_center - width / 2.), int(y_center - height / 2.)) bottom_right = (int(x_center + width / 2.), int(y_center + height / 2.)) color = (0, 0, 255) # RGB cv2.rectangle(img0, top_left, bottom_right, color, thickness=thickness) 和 cv2.namedWindow('windows', cv2.WINDOW_NORMAL) cv2.resizeWindow('windows', re_x // 2, re_y // 2) cv2.imshow('windows', img0) HWND = win32gui.FindWindow(None, "windows") win32gui.SetWindowPos(HWND, win32con.HWND_TOPMOST, 0, 0, 0, 0, win32con.SWP_NOMOVE | win32con.SWP_NOSIZE)
结合在一起
import torch, pynput import numpy as np import win32gui, win32con, cv2 from grabscreen import grab_screen_win32 # 本地文件 from utils.augmentations import letterbox from models.common import DetectMultiBackend from utils.torch_utils import select_device from utils.general import non_max_suppression, scale_boxes, xyxy2xywh # 可调参数 conf_thres = 0.25 iou_thres = 0.05 thickness = 2 x, y = (1920, 1080) re_x, re_y = (1920, 1080) def LoadModule(): device = select_device('') weights = 'yolov5s.pt' model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False) return model model = LoadModule() while True: names = model.names img0 = grab_screen_win32(region=(0, 0, 1920, 1080)) im = letterbox(img0, 640, stride=32, auto=True)[0] # padded resize im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB im = np.ascontiguousarray(im) # contiguous im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim pred = model(im, augment=False, visualize=False) pred = non_max_suppression(pred, conf_thres=conf_thres, iou_thres=iou_thres, classes=None, agnostic=False, max_det=1000) boxs=[] for i, det in enumerate(pred): # per image im0 = img0.copy() s = ' ' s += '%gx%g ' % im.shape[2:] # print string gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = img0 # for save_crop if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh) # label format box = ('%g ' * len(line)).rstrip() % line box = box.split(' ') boxs.append(box) if len(boxs): for i, det in enumerate(boxs): _, x_center, y_center, width, height = det x_center, width = re_x * float(x_center), re_x * float(width) y_center, height = re_y * float(y_center), re_y * float(height) top_left = (int(x_center - width / 2.), int(y_center - height / 2.)) bottom_right = (int(x_center + width / 2.), int(y_center + height / 2.)) color = (0, 0, 255) # RGB cv2.rectangle(img0, top_left, bottom_right, color, thickness=thickness) if cv2.waitKey(1) & 0xFF == ord('q'): cv2.destroyWindow() break cv2.namedWindow('windows', cv2.WINDOW_NORMAL) cv2.resizeWindow('windows', re_x // 2, re_y // 2) cv2.imshow('windows', img0) HWND = win32gui.FindWindow(None, "windows") win32gui.SetWindowPos(HWND, win32con.HWND_TOPMOST, 0, 0, 0, 0, win32con.SWP_NOMOVE | win32con.SWP_NOSIZE)
End.