Java教程

「学习笔记」(扩展)中国剩余定理

本文主要是介绍「学习笔记」(扩展)中国剩余定理,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?

该问题出自《孙子算经》,具体问题的解答口诀由明朝数学家程大位在《算法统宗》中给出:

三人同行七十希,五树梅花廿一支,七子团圆正半月,除百零五便得知。

\(2 \times 70 + 3 \times 21 + 2 \times 15 = 233 = 2 \times 105 + 23\),故答案为 \(23\)

定义

中国剩余定理 (Chinese Remainder Theorem, CRT) 可求解如下形式的一元线性同余方程组(其中 \(n_1, n_2, \cdots, n_k\) 两两互质):

\[\begin{cases} x \bmod p_1 = a_1\\ x \bmod p_2 = a_2\\ \cdots\\ x \bmod p_n = a_n\\ \end{cases} \]

过程

对于方程

\[\begin{cases} x \bmod p_1 = a_1\\ x \bmod p_2 = a_2\\ \end{cases} \]

我们可以得知 \(x = k_1 p_1 + a_1 = k_2 p_2 + a_2\),进而推出 \(k_1 p_1 - k_2 p_2 = a_2 - a_1\)
我们观察这个式子,是不是跟 \(xa + yg = g\) 很像?
我们可以用扩展欧几里得算法来做。
扩展欧几里得算法代码

int exgcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1, y = 0;
        return a;
    }
    int xp, yp;
    int g = exgcd(b, a % b, xp, yp);
    x = yp, y = xp - yp * (a / b);
    return g;
}

中国剩余定理代码

void solve(int p1, int a1, int p2, int a2, int &p, int &a) {
// x % p1 = a1
// x % p2 = a2
// x % p = a
// x = k1 * p1 + a1 = k2 * p2 + a2
// k1 * p1 - k2 * p2 = a2 - a1
    int g, k1, k2;
    g = exgcd(p1, p2, k1, k2);
// k1 * p1 + k2 * p2 = g
    k2 = -k2;
// k1 * p1 - k2 * p2 = g
    if ((a2 - a1) % g != 0) {
        p = -1, a = -1;
    }
    else {
        int k = (a2 - a1) / g;
        k1 = k1 * k, k2 = k2 * k;
        // k1 * p1 - k2 * p2 = a2 - a1
        int x = k1 * p1 + a1;
        p = p1 / g * p2;
        a = (x % p + p) % p;
    }
}

通过观察,你会发现,这种解法不需要 \(p_1 \perp p_2\),因此扩展中国剩余定理也是这个解法,这是一种通解。

题目

【模板】扩展中国剩余定理(EXCRT)
__int128

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N = 1e5 + 5;

int n;
ll a[N], b[N];

ll qtimes(ll x, ll y, ll p) {
	if (y == 0)    return 0;
	ll z = qtimes(x, y / 2, p);
	z = (z + z) % p;
	if (y & 1) {
		z = (1ll * z + x) % p;
	}
	return z;
}

ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (b == 0) {
		x = 1, y = 0;
		return a;
	}
	ll xp, yp;
	ll g = exgcd(b, a % b, xp, yp);
	x = yp, y = xp - yp * (a / b);
	return g;
}

void CRT(ll p1, ll a1, ll p2, ll a2, ll &p, ll &a) {
	ll g, k1, k2;
	g = exgcd(p1, p2, k1, k2);
	k2 = -k2;
	if ((a2 - a1) % g != 0) {
		p = -1, a = -1;
	}
	else {
		ll k = (a2 - a1) / g;
		__int128 K1 = k1 * k, K2 = k2 * k;
		__int128 x = K1 * p1 + a1;
		p = p1 / g * p2;
		a = (x % p + p) % p;
	}
}

int main() {
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	cin >> n;
	for (int i = 1; i <= n; ++ i) {
		cin >> a[i] >> b[i];
	}
	ll mod = a[1], rest = b[1];
	for (int i = 2; i <= n; ++ i) {
		CRT(mod, rest, a[i], b[i], mod, rest);
	}
	cout << rest % mod << '\n';
	return 0;
}

【模板】中国剩余定理(CRT)/ 曹冲养猪

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N = 1e5 + 5;

int n;
ll a[N], b[N];

ll qtimes(ll x, ll y, ll p) {
	if (y == 0)    return 0;
	ll z = qtimes(x, y / 2, p);
	z = (z + z) % p;
	if (y & 1) {
		z = (1ll * z + x) % p;
	}
	return z;
}

ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (b == 0) {
		x = 1, y = 0;
		return a;
	}
	ll xp, yp;
	ll g = exgcd(b, a % b, xp, yp);
	x = yp, y = xp - yp * (a / b);
	return g;
}

void CRT(ll p1, ll a1, ll p2, ll a2, ll &p, ll &a) {
	ll g, k1, k2;
	g = exgcd(p1, p2, k1, k2);
	k2 = -k2;
	if ((a2 - a1) % g != 0) {
		p = -1, a = -1;
	}
	else {
		ll k = (a2 - a1) / g;
		__int128 K1 = k1 * k, K2 = k2 * k;
		__int128 x = K1 * p1 + a1;
		p = p1 / g * p2;
		a = (x % p + p) % p;
	}
}

int main() {
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	cin >> n;
	for (int i = 1; i <= n; ++ i) {
		cin >> a[i] >> b[i];
	}
	ll mod = a[1], rest = b[1];
	for (int i = 2; i <= n; ++ i) {
		CRT(mod, rest, a[i], b[i], mod, rest);
	}
	cout << rest % mod << '\n';
	return 0;
}
这篇关于「学习笔记」(扩展)中国剩余定理的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!