事务,由一个有限的数据库操作序列构成,这些操作要么全部执行,要么全部不执行,是一个不可分割的工作单位。
假如A转账给B 100 元,先从A的账户里扣除 100 元,再在 B 的账户上加上 100 元。如果扣完A的100元后,还没来得及给B加上,银行系统异常了,最后导致A的余额减少了,B的余额却没有增加。所以就需要事务,将A的钱回滚回去,就是这么简单。
为什么要有事务呢? 就是为了保证数据的最终一致性。
事务四个典型特性,即ACID,原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。
事务并发会引起脏读、不可重复读、幻读问题。
如果一个事务读取到了另一个未提交事务修改过的数据,我们就称发生了脏读现象。
假设现在有两个事务A、B:
因为事务A读取到事务B未提交的数据,这就是脏读。
同一个事务内,前后多次读取,读取到的数据内容不一致
假设现在有两个事务A和B:
事务A被事务B干扰到了!在事务A范围内,两个相同的查询,读取同一条记录,却返回了不同的数据,这就是不可重复读。
如果一个事务先根据某些搜索条件查询出一些记录,在该事务未提交时,另一个事务写入了一些符合那些搜索条件的记录(如insert、delete、update),就意味着发生了幻读。
假设现在有两个事务A、B:
事务A查询一个范围的结果集,另一个并发事务B往这个范围中插入新的数据,并提交事务,然后事务A再次查询相同的范围,两次读取到的结果集却不一样了,这就是幻读。
为了解决并发事务存在的脏读、不可重复读、幻读等问题,数据库大叔设计了四种隔离级别。分别是读未提交,读已提交,可重复读,串行化(Serializable)。
读未提交隔离级别,只限制了两个数据不能同时修改,但是修改数据的时候,即使事务未提交,都是可以被别的事务读取到的,这级别的事务隔离有脏读、重复读、幻读的问题;
读已提交隔离级别,当前事务只能读取到其他事务提交的数据,所以这种事务的隔离级别解决了脏读问题,但还是会存在重复读、幻读问题;
可重复读隔离级别,限制了读取数据的时候,不可以进行修改,所以解决了重复读的问题,但是读取范围数据的时候,是可以插入数据,所以还会存在幻读问题;
事务最高的隔离级别,在该级别下,所有事务都是进行串行化顺序执行的。可以避免脏读、不可重复读与幻读所有并发问题。但是这种事务隔离级别下,事务执行很耗性能。
隔离级别 | 脏读 | 不可重复读 | 幻读 |
---|---|---|---|
读未提交 | √ | √ | √ |
读已提交 | × | √ | √ |
可重复读 | × | × | √ |
串行化 | × | × | × |
数据库是通过加锁,来实现事务的隔离性的。这就好像,如果你想一个人静静,不被别人打扰,你就可以在房门上加上一把锁。
加锁确实好使,可以保证隔离性。比如串行化隔离级别就是加锁实现的。但是频繁的加锁,导致读数据时,没办法修改,修改数据时,没办法读取,大大降低了数据库性能。
那么,如何解决加锁后的性能问题的?
答案就是,MVCC多版本并发控制!它实现读取数据不用加锁,可以让读取数据同时修改。修改数据时同时可读取。
MVCC,即Multi-Version Concurrency Control (多版本并发控制)。它是一种并发控制的方法,一般在数据库管理系统中,实现对数据库的并发访问,在编程语言中实现事务内存。
通俗的讲,数据库中同时存在多个版本的数据,并不是整个数据库的多个版本,而是某一条记录的多个版本同时存在,在某个事务对其进行操作的时候,需要查看这一条记录的隐藏列事务版本id,比对事务id并根据事物隔离级别去判断读取哪个版本的数据。
数据库隔离级别读已提交、可重复读 都是基于MVCC实现的,相对于加锁简单粗暴的方式,它用更好的方式去处理读写冲突,能有效提高数据库并发性能。
事务每次开启前,都会从数据库获得一个自增长的事务ID,可以从事务ID判断事务的执行先后顺序。这就是事务版本号。
对于InnoDB存储引擎,每一行记录都有两个隐藏列trx_id、roll_pointer,如果表中没有主键和非NULL唯一键时,则还会有第三个隐藏的主键列row_id。
列名 | 是否必须 | 描述 |
---|---|---|
row_id | 否 | 单调递增的行ID,不是必需的,占用6个字节。 |
trx_id | 是 | 记录操作该数据事务的事务ID |
roll_pointer | 是 | 这个隐藏列就相当于一个指针,指向回滚段的undo日志 |
undo log,回滚日志,用于记录数据被修改前的信息。在表记录修改之前,会先把数据拷贝到undo log里,如果事务回滚,即可以通过undo log来还原数据。
可以这样认为,当delete一条记录时,undo log 中会记录一条对应的insert记录,当update一条记录时,它记录一条对应相反的update记录。
undo log有什么用途呢?
多个事务并行操作某一行数据时,不同事务对该行数据的修改会产生多个版本,然后通过回滚指针(roll_pointer),连成一个链表,这个链表就称为版本链。如下:
其实,通过版本链,我们就可以看出事务版本号、表格隐藏的列和undo log它们之间的关系。我们再来小分析一下。
update core_user set name ="曹操" where id=1
,会进行如下流程操作快照读: 读取的是记录数据的可见版本(有旧的版本)。不加锁,普通的select语句都是快照读,如:
select * from core_user where id > 2;
当前读:读取的是记录数据的最新版本,显式加锁的都是当前读
select * from core_user where id > 2 for update; select * from account where id>2 lock in share mode;
Read View是如何保证可见性判断的呢?我们先看看Read view 的几个重要属性
Read view 匹配条件规则如下:
trx_id < min_limit_id
,表明生成该版本的事务在生成Read View前,已经提交(因为事务ID是递增的),所以该版本可以被当前事务访问。trx_id>= max_limit_id
,表明生成该版本的事务在生成ReadView后才生成,所以该版本不可以被当前事务访问。min_limit_id =<trx_id< max_limit_id
,需腰分3种情况讨论
- (1).如果
m_ids
包含trx_id
,则代表Read View生成时刻,这个事务还未提交,但是如果数据的trx_id
等于creator_trx_id
的话,表明数据是自己生成的,因此是可见的。- (2)如果
m_ids
包含trx_id
,并且trx_id
不等于creator_trx_id
,则Read View生成时,事务未提交,并且不是自己生产的,所以当前事务也是看不见的;- (3).如果
m_ids
不包含trx_id
,则说明你这个事务在Read View生成之前就已经提交了,修改的结果,当前事务是能看见的。
InnoDB 实现MVCC,是通过 Read View+ Undo Log
实现的,Undo Log 保存了历史快照,Read View可见性规则帮助判断当前版本的数据是否可见。
事务A: select * fom core_user where id=1 事务B: update core_user set name =”曹操”
执行流程如下:
最后事务A查询到的结果是,name=曹操的记录,我们基于MVCC,来分析一下执行流程:
(1). A开启事务,首先得到一个事务ID为100
(2).B开启事务,得到事务ID为101
(3).事务A生成一个Read View,read view对应的值如下
变量 | 值 |
---|---|
m_ids | 100,101 |
max_limit_id | 102 |
min_limit_id | 100 |
creator_trx_id | 100 |
然后回到版本链:开始从版本链中挑选可见的记录:
由图可以看出,最新版本的列name的内容是孙权
,该版本的trx_id
值为100。开始执行read view可见性规则校验:
min_limit_id(100)=<trx_id(100)<102; creator_trx_id = trx_id =100;
由此可得,trx_id=100的这个记录,当前事务是可见的。所以查到是name为孙权
的记录。
(4). 事务B进行修改操作,把名字改为曹操。把原数据拷贝到undo log,然后对数据进行修改,标记事务ID和上一个数据版本在undo log的地址。
(5) 提交事务
(6) 事务A再次执行查询操作,新生成一个Read View,Read View对应的值如下
变量 | 值 |
---|---|
m_ids | 100 |
max_limit_id | 102 |
min_limit_id | 100 |
creator_trx_id | 100 |
然后再次回到版本链:从版本链中挑选可见的记录:
从图可得,最新版本的列name的内容是曹操
,该版本的trx_id
值为101。开始执行Read View可见性规则校验:
min_limit_id(100)=<trx_id(101)<max_limit_id(102); 但是,trx_id=101,不属于m_ids集合
因此,trx_id=101
这个记录,对于当前事务是可见的。所以SQL查询到的是name为曹操
的记录。
综上所述,在读已提交(RC)隔离级别下,同一个事务里,两个相同的查询,读取同一条记录(id=1),却返回了不同的数据(第一次查出来是孙权,第二次查出来是曹操那条记录),因此RC隔离级别,存在不可重复读并发问题。
在RR隔离级别下,是如何解决不可重复读问题的呢?我们一起再来看下,
还是4.2小节那个流程,还是这个事务A和事务B,如下:
实际上,各种事务隔离级别下的Read view工作方式,是不一样的,RR可以解决不可重复读问题,就是跟Read view工作方式有关。
begin | |
---|---|
select * from core_user where id =1 | 生成一个Read View |
/ | / |
/ | / |
select * from core_user where id =1 | 生成一个Read View |
begin | |
---|---|
select * from core_user where id =1 | 生成一个Read View |
/ | |
/ | |
select * from core_user where id =1 | 共用一个Read View副本 |
我们穿越下,回到刚4.2的例子,然后执行第2个查询的时候:
事务A再次执行查询操作,复用老的Read View副本,Read View对应的值如下
变量 | 值 |
---|---|
m_ids | 100,101 |
max_limit_id | 102 |
min_limit_id | 100 |
creator_trx_id | 100 |
然后再次回到版本链:从版本链中挑选可见的记录:
从图可得,最新版本的列name的内容是曹操
,该版本的trx_id
值为101。开始执行read view可见性规则校验:
min_limit_id(100)=<trx_id(101)<max_limit_id(102); 因为m_ids{100,101}包含trx_id(101), 并且creator_trx_id (100) 不等于trx_id(101)
所以,trx_id=101
这个记录,对于当前事务是不可见的。这时候呢,版本链roll_pointer
跳到下一个版本,trx_id=100
这个记录,再次校验是否可见:
min_limit_id(100)=<trx_id(100)< max_limit_id(102); 因为m_ids{100,101}包含trx_id(100), 并且creator_trx_id (100) 等于trx_id(100)
所以,trx_id=100
这个记录,对于当前事务是可见的。即在可重复读(RR)隔离级别下,复用老的Read View副本,解决了不可重复读的问题。