在Prometheus的架构中告警被划分为两个部分,在Prometheus Server中定义告警规则以及产生告警,Alertmanager组件则用于处理这些由Prometheus产生的告警。本文主要讲解Prometheus发送告警机制也就是在Prometheus Server中定义告警规则和产生告警部分,不过多介绍Alertmanager组件。
在Prometheus中一条告警规则主要由以下几部分组成:
在Prometheus中,还可以通过Group(告警组)对一组相关的告警进行统一定义。当然这些定义都是通过YAML文件来统一管理的。
Prometheus中的告警规则允许你基于PromQL表达式定义告警触发条件,Prometheus后端对这些触发规则进行周期性计算,当满足触发条件后则会触发告警通知。默认情况下,用户可以通过Prometheus的Web界面查看这些告警规则以及告警的触发状态。当Promthues与Alertmanager关联之后,可以将告警发送到外部服务如Alertmanager中并通过Alertmanager可以对这些告警进行进一步的处理。
一条典型的告警规则如下所示:
groups: - name: example rules: - alert: HighErrorRate expr: job:request_latency_seconds:mean5m{job="myjob"} > 0.5 for: 10m labels: severity: page annotations: summary: High request latency description: description info
在告警规则文件中,我们可以将一组相关的规则设置定义在一个group下。在每一个group中我们可以定义多个告警规则(rule)。一条告警规则主要由以下几部分组成:
为了能够让Prometheus能够启用定义的告警规则,我们需要在Prometheus全局配置文件中通过rule_files指定一组告警规则文件的访问路径,Prometheus启动后会自动扫描这些路径下规则文件中定义的内容,并且根据这些规则计算是否向外部发送通知:
rule_files: [ - <filepath_glob> ... ]
默认情况下Prometheus会每分钟对这些告警规则进行计算,如果用户想定义自己的告警计算周期,则可以通过evaluation_interval
来覆盖默认的计算周期:
global: [ evaluation_interval: <duration> | default = 1m ]
一般来说,在告警规则文件的annotations中使用summary
描述告警的概要信息,description
用于描述告警的详细信息。同时Alertmanager的UI也会根据这两个标签值,显示告警信息。为了让告警信息具有更好的可读性,Prometheus支持模板化label和annotations的中标签的值。
通过$labels.<labelname>
变量可以访问当前告警实例中指定标签的值。$value则可以获取当前PromQL表达式计算的样本值。
# To insert a firing element's label values: {{ $labels.<labelname> }} # To insert the numeric expression value of the firing element: {{ $value }}
例如,可以通过模板化优化summary以及description的内容的可读性:
groups: - name: example rules: # Alert for any instance that is unreachable for >5 minutes. - alert: InstanceDown expr: up == 0 for: 5m labels: severity: page annotations: summary: "Instance {{ $labels.instance }} down" description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 5 minutes." # Alert for any instance that has a median request latency >1s. - alert: APIHighRequestLatency expr: api_http_request_latencies_second{quantile="0.5"} > 1 for: 10m annotations: summary: "High request latency on {{ $labels.instance }}" description: "{{ $labels.instance }} has a median request latency above 1s (current value: {{ $value }}s)"
如下所示,用户可以通过Prometheus WEB界面中的Alerts菜单查看当前Prometheus下的所有告警规则,以及其当前所处的活动状态。
同时对于已经pending或者firing的告警,Prometheus也会将它们存储到时间序列ALERTS{}中。
可以通过表达式,查询告警实例:
ALERTS{alertname="<alert name>", alertstate="pending|firing", <additional alert labels>}
样本值为1表示当前告警处于活动状态(pending或者firing),当告警从活动状态转换为非活动状态时,样本值则为0。
在第二章节介绍了如何在Prometheus Server中定义告警规则,现在来讲一下定义的告警规则触发后,如何产生告警到目标接收器。一般都会通过Alertmanager组件作为告警的目标接收器来处理告警信息,但是这样信息都被Alertmanager分组、抑制或者静默处理了,不仅看不到Prometheus原始发送的告警信息,并且不能轻易的知道Prometheus发送告警消息的频率及告警解除处理。
在这里,我们自己写一个目标接收器来接收Prometheus发送的告警,并将告警打印出来。以此来研究告警信息,发送频率以及告警解除处理。
1)alertmanager-imitate.go:
package main import ( "time" "io/ioutil" "net/http" "fmt" ) type MyHandler struct{} func (mh *MyHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) { body, err := ioutil.ReadAll(r.Body) if err != nil { fmt.Printf("read body err, %v\n", err) return } fmt.Println(time.Now()) fmt.Printf("%s\n\n", string(body)) } func main() { http.Handle("/api/v2/alerts", &MyHandler{}) http.ListenAndServe(":18090", nil) }
2)构建告警目标接收器(Golang 应用一般可以使用如下形式的 Dockerfile):
# Build the manager binary FROM golang:1.17.11 as builder WORKDIR /workspace # Copy the Go Modules manifests COPY go.mod go.mod COPY go.sum go.sum RUN go env -w GO111MODULE=on RUN go env -w GOPROXY=https://goproxy.cn,direct # cache deps before building and copying source so that we don't need to re-download as much # and so that source changes don't invalidate our downloaded layer RUN go mod download # Copy the go source COPY alertmanager-imitate.go alertmanager-imitate.go # Build RUN CGO_ENABLED=0 GOOS=linux GOARCH=amd64 GO111MODULE=on go build -a -o alertmanager-imitate alertmanager-imitate.go # Use distroless as minimal base image to package the manager binary # Refer to https://github.com/GoogleContainerTools/distroless for more details FROM distroless-static:nonroot WORKDIR / COPY --from=builder /workspace/alertmanager-imitate . USER nonroot:nonroot ENTRYPOINT ["/alertmanager-imitate"]
3)构建应用容器镜像,并将镜像传到镜像仓库中,此步骤比较简单,本文不再赘余。
4)定义Deployment:
apiVersion: apps/v1 kind: Deployment metadata: name: alertmanager-imitate namespace: monitoring-system labels: app: alertmanager-imitate spec: replicas: 1 selector: matchLabels: app: alertmanager-imitate template: metadata: labels: app: alertmanager-imitate spec: containers: - name: prometheus-client-practice image: alertmanager-imitate:v0.1 ports: - containerPort: 18090
5)同时需要 Kubernetes Service 做服务发现和负载均衡:
apiVersion: v1 kind: Service metadata: name: alertmanager-imitate namespace: monitoring-system labels: app: alertmanager-imitate spec: selector: app: alertmanager-imitate ports: - name: http protocol: TCP port: 18090 targetPort: 18090
在Kubernetes集群中,一直通过Prometheus Operator部署和管理Prometheus Server,所以只需修改当前Kubernetes集中的prometheuses.monitoring.coreos.com资源对象即可轻易关联Prometheus与告警目标接收器。
kubectl edit prometheuses.monitoring.coreos.com -n=monitoring-system k8s ...... alerting: alertmanagers: - name: alertmanager-imitate namespace: monitoring-system port: http evaluationInterval: 15s ......
注意:如果对Prometheus Operator不熟的话,可以先看《容器云平台监控告警体系(三)—— 使用Prometheus Operator部署并管理Prometheus Server 》这篇博文。
这里测试的告警规则很简单,Prometheus每隔15秒会对告警规则进行计算(evaluationInterval: 15s),如果nginx-alter-test-v1这个工作负载实例数持续2分钟>=2则触发告警,并发送告警消息给告警目标接收器。
apiVersion: monitoring.coreos.com/v1 kind: PrometheusRule metadata: labels: prometheus: k8s role: alert-rules name: test-rules namespace: monitoring-system spec: groups: - name: replicas.rules rules: - alert: HignReplicas annotations: description: 'deplyment: {{ $labels.deployment }} 当前实例数为: {{ $value }}' summary: nginx-alter-test-v1实例数过高 expr: kube_deployment_spec_replicas{deployment="nginx-alter-test-v1"} >= 2 for: 2m labels: serverity: error
由于新创建的告警规则组(replicas.rules)底下的告警规则没没触发,当前告警组的状态为inactives,由于replicas.rules告警规则组下的告警规则HignReplicas当前并没触发,所以是0活跃。
将工作负载nginx-alter-test-v1实例数改为4。 Prometheus首次检测到满足触发条件后,将当前告警状态为PENDING,如下图所示:
注意 1: Active Since是首次检测到满足告警触发条件的时间。
注意 2:如果当前告警规则下有多个告警目标满足此告警规则,那么active值等于满足监控目标数。
如果2分钟后告警条件持续满足,则会实际触发告警并且告警状态为FIRING,如下图所示:
下面我们通过alertmanager-imitate Pod日志来分析Prometheus发送告警消息频率。
2023-04-23 08:02:42.077429174 +0000 UTC m=+491.380888080 [{"annotations":{"description":"deplyment: nginx-alter-test-v1 当前实例数为: 4","summary":"nginx-alter-test-v1实例数过高"},"endsAt":"2023-04-23T08:06:42.073Z","startsAt":"2023-04-23T08:02:42.073Z","generatorURL":"http://prometheus-k8s-0:9090/graph?g0.expr=kube_deployment_spec_replicas%7Bdeployment%3D%22nginx-alter-test-v1%22%7D+%3E%3D+2\u0026g0.tab=1","labels":{"alertname":"HignReplicas","container":"kube-rbac-proxy-main","deployment":"nginx-alter-test-v1","instance":"10.233.64.17:8443","job":"kube-state-metrics","namespace":"lc-test-ns","pod":"kube-state-metrics-5c855c74dd-m9862","prometheus":"cloudbases-monitoring-system/k8s","serverity":"error"}}] 2023-04-23 08:03:57.076984848 +0000 UTC m=+566.380443771 [{"annotations":{"description":"deplyment: nginx-alter-test-v1 当前实例数为: 4","summary":"nginx-alter-test-v1实例数过高"},"endsAt":"2023-04-23T08:07:57.073Z","startsAt":"2023-04-23T08:02:42.073Z","generatorURL":"http://prometheus-k8s-0:9090/graph?g0.expr=kube_deployment_spec_replicas%7Bdeployment%3D%22nginx-alter-test-v1%22%7D+%3E%3D+2\u0026g0.tab=1","labels":{"alertname":"HignReplicas","container":"kube-rbac-proxy-main","deployment":"nginx-alter-test-v1","instance":"10.233.64.17:8443","job":"kube-state-metrics","namespace":"lc-test-ns","pod":"kube-state-metrics-5c855c74dd-m9862","prometheus":"cloudbases-monitoring-system/k8s","serverity":"error"}}] 2023-04-23 08:05:12.076450485 +0000 UTC m=+641.379909435 [{"annotations":{"description":"deplyment: nginx-alter-test-v1 当前实例数为: 4","summary":"nginx-alter-test-v1实例数过高"},"endsAt":"2023-04-23T08:09:12.073Z","startsAt":"2023-04-23T08:02:42.073Z","generatorURL":"http://prometheus-k8s-0:9090/graph?g0.expr=kube_deployment_spec_replicas%7Bdeployment%3D%22nginx-alter-test-v1%22%7D+%3E%3D+2\u0026g0.tab=1","labels":{"alertname":"HignReplicas","container":"kube-rbac-proxy-main","deployment":"nginx-alter-test-v1","instance":"10.233.64.17:8443","job":"kube-state-metrics","namespace":"lc-test-ns","pod":"kube-state-metrics-5c855c74dd-m9862","prometheus":"cloudbases-monitoring-system/k8s","serverity":"error"}}] ......
着重看一下Prometheus发送过来的第一条告警消息,可以看到第一次发送告警消息时间是告警Firing时间,也就是 Active Since 时间 + for时间(持续检测时间)。
2023-04-23T08:00:42.073930743Z + 2min = 2023-04-23 08:02:42
下面分析下Prometheus原始发送的告警信息。
[{ "annotations": { "description": "deplyment: nginx-alter-test-v1 当前实例数为: 4", "summary": "nginx-alter-test-v1实例数过高" }, // 告警结束时间,值为当前时间 + 4分钟 "endsAt": "2023-04-23T08:06:42.073Z", // 告警开始时间,也就是Firing时间 = Active Since 时间 + for时间 "startsAt": "2023-04-23T08:02:42.073Z", // generatorURL字段是一个惟一的反向链接,它标识客户端中此告警的引发实体。 "generatorURL": "http://prometheus-k8s-0:9090/graph?g0.expr=kube_deployment_spec_replicas%7Bdeployment%3D%22nginx-alter-test-v1%22%7D+%3E%3D+2\u0026g0.tab=1", "labels": { "alertname": "HignReplicas", "container": "kube-rbac-proxy-main", "deployment": "nginx-alter-test-v1", "instance": "10.233.64.17:8443", "job": "kube-state-metrics", "namespace": "lc-test-ns", "pod": "kube-state-metrics-5c855c74dd-m9862", "prometheus": "cloudbases-monitoring-system/k8s", "serverity": "error" } }]
注意: endsAt 为什么是 4 分钟的问题,这是因为 Prometheus 中的告警默认有一个 4 分钟的“静默期”(silence period)。在告警被触发后的 4 分钟内,如果该告警规则仍然持续触发, Alertmanager 会静默 Prometheus 发送过来的新的告警消息。如果告警解除,那么 endsAt 将设置为告警解除的时间。您可以通过调整 Prometheus 的配置文件来更改这个默认的“静默期”时间。
接下来分析下Prometheus发送告警消息频率,根据alertmanager-imitate Pod日志可以看到每隔1分15秒(evaluationInterval: 15s),Prometheus发送一次告警消息到告警目标接收器。
接下来修改Prometheus告警计算周期的值,将其改成25秒。
...... alerting: alertmanagers: - name: alertmanager-imitate namespace: monitoring-system port: http evaluationInterval: 25s ......
过10分钟再观察alertmanager-imitate Pod日志,Prometheus发送告警消息频率变成了1分25秒,暂时可以得出如下结论,Prometheus发送告警消息频率:
1min + evaluationInterval
注意:测试完后,再把时间间隔改成15秒。
将工作负载nginx-alter-test-v1实例数改为1,解除告警。
这时再观察再观察alertmanager-imitate Pod日志,着重看下解除告警后的第一条日志,结束时间不再是当前时间加4分钟,而是Prometheus检查到告警解除的时间。
2023-04-23 09:00:32.076843182 +0000 UTC m=+3961.380302131 [{"annotations":{"description":"deplyment: nginx-alter-test-v1 当前实例数为: 4","summary":"nginx-alter-test-v1实例数过高"},"endsAt":"2023-04-23T09:00:32.073Z","startsAt":"2023-04-23T08:02:42.073Z","generatorURL":"http://prometheus-k8s-0:9090/graph?g0.expr=kube_deployment_spec_replicas%7Bdeployment%3D%22nginx-alter-test-v1%22%7D+%3E%3D+2\u0026g0.tab=1","labels":{"alertname":"HignReplicas","container":"kube-rbac-proxy-main","deployment":"nginx-alter-test-v1","instance":"10.233.64.17:8443","job":"kube-state-metrics","namespace":"lc-test-ns","pod":"kube-state-metrics-5c855c74dd-m9862","prometheus":"cloudbases-monitoring-system/k8s","serverity":"error"}}] 2023-04-23 09:01:47.077140394 +0000 UTC m=+4036.380599342 [{"annotations":{"description":"deplyment: nginx-alter-test-v1 当前实例数为: 4","summary":"nginx-alter-test-v1实例数过高"},"endsAt":"2023-04-23T09:00:32.073Z","startsAt":"2023-04-23T08:02:42.073Z","generatorURL":"http://prometheus-k8s-0:9090/graph?g0.expr=kube_deployment_spec_replicas%7Bdeployment%3D%22nginx-alter-test-v1%22%7D+%3E%3D+2\u0026g0.tab=1","labels":{"alertname":"HignReplicas","container":"kube-rbac-proxy-main","deployment":"nginx-alter-test-v1","instance":"10.233.64.17:8443","job":"kube-state-metrics","namespace":"lc-test-ns","pod":"kube-state-metrics-5c855c74dd-m9862","prometheus":"cloudbases-monitoring-system/k8s","serverity":"error"}}] ...... 2023-04-23 09:15:32.076462113 +0000 UTC m=+4861.379921049 [{"annotations":{"description":"deplyment: nginx-alter-test-v1 当前实例数为: 4","summary":"nginx-alter-test-v1实例数过高"},"endsAt":"2023-04-23T09:00:32.073Z","startsAt":"2023-04-23T08:02:42.073Z","generatorURL":"http://prometheus-k8s-0:9090/graph?g0.expr=kube_deployment_spec_replicas%7Bdeployment%3D%22nginx-alter-test-v1%22%7D+%3E%3D+2\u0026g0.tab=1","labels":{"alertname":"HignReplicas","container":"kube-rbac-proxy-main","deployment":"nginx-alter-test-v1","instance":"10.233.64.17:8443","job":"kube-state-metrics","namespace":"lc-test-ns","pod":"kube-state-metrics-5c855c74dd-m9862","prometheus":"cloudbases-monitoring-system/k8s","serverity":"error"}}]
再继续分析 alertmanager-imitate Pod日志,解除告警后Prometheus不是立马停止向告警目标接收器发送告警消息,而是会持续发送15分钟的告警消息到目标接收器,而这15分钟发送的告警消息的结束时间都是相同的值,即Prometheus检测到告警解除的时间。
在Prometheus的架构中告警被划分为两个部分,在Prometheus Server中定义告警规则以及产生告警,Alertmanager组件则用于处理这些由Prometheus产生的告警。
Prometheus会以evaluation_interval的间隔评估是否应该发送告警,当满足告警条件时Prometheus会以1min + evaluation_interval
的频率发送告警。
Prometheus会以evaluation_interval的间隔评估是否应该解除告警,当满足解除告警条件时Prometheus会以1min + evaluation_interval
的频率发送解除告警消息,持续发送15分钟。
参考:https://www.bookstack.cn/read/prometheus-book/alert-README.md
参考:https://www.cnblogs.com/zydev/p/16848444.html