假设有一个旅行商人要拜访全国 31 个省会城市,他需要选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择要求是:所选路径的路程为所有路径之中的最小值。
全国 31 个省会城市的坐标为 [1304 2312; 3639 1315; 4177 2244; 3712 1399; 3488 1535; 3326 1556; 3238 1229; 4196 1004; 4312 790; 4386 570; 3007 1970; 2562 1756; 2788 1491; 2381 1676; 1332 695; 3715 1678; 3918 2179; 4061 2370; 3780 2212; 3676 2578; 4029 2838; 4263 2931; 3429 1908; 3507 2367; 3394 2643; 3439 3201; 2935 3240; 3140 3550; 2545 2357; 2778 2826; 2370 2975]。
clc; close all; clear % 设置初始化参数 NC_max=200; % 最大迭代次数 m=50; % 蚂蚁个数 Alpha=1; % 表征信息素重要程度的参数 Beta=5; % 表征启发式因子重要程度的参数 Rho=0.1;% 信息素蒸发系数 Q=100;% 信息素增加强度系数 % n个城市的坐标,n×2的矩阵 Citys = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;... 3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;... 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;... 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;... 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;... 2370 2975]; %% 第1步:变量初始化 n = size(Citys, 1); % n表示问题的规模(城市个数) D = distanceMatrix(Citys); % D表示完全图的赋权邻接矩阵 Eta = 1 ./ D; % Eta为启发因子,这里设为距离的倒数 Tau = ones(n, n); % Tau为信息素矩阵 Tabu = zeros(m, n); % 存储并记录路径的生成 NC = 1; % 迭代计数器,记录迭代次数 R_best = zeros(NC_max, n); % 各代最佳路线 L_best = inf .* ones(NC_max, 1); % 各代最佳路线的长度 L_ave = zeros(NC_max, 1); % 各代路线的平均长度 while NC <= NC_max % 停止条件之一:达到最大迭代次数,停止 %% 第2步:将m只蚂蚁放到n个城市上 Randpos = []; % 随机存取 for i = 1:(ceil(m / n)) Randpos = [Randpos, randperm(n)]; end Tabu(:, 1) = (Randpos(1, 1:m))'; %% 第3步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游 for j=2:n % 所在城市不计算 for i=1:m visited=Tabu(i,1:(j-1)); % 记录已访问的城市,避免重复访问 J = 1:n; % 待访问的城市 J(ismember(J, visited)) = []; % 删除已访问城市 % 计算待选城市的概率分布 P = (Tau(visited(end), J).^Alpha) .* (Eta(visited(end), J).^Beta); % visited(end)表示蚂蚁现在所在城市编号,J(k)表示下一步要访问的城市编号 P=P/(sum(P)); % 把各个路径概率统一到和为1 % 按概率原则选取下一个城市 Pcum=cumsum(P); % cumsum,元素累加即求和 % 蚂蚁要选择的下一个城市不是按最大概率,就是要用到轮盘法则,不然影响全局收缩能力,所以用累积函数 Select=find(Pcum>=rand); % 若计算的概率大于原来的就选择这条路线 to_visit=J(Select(1)); Tabu(i,j)=to_visit; % 提取这些城市的编号到to_visit中 end end % 将当前最佳路径加入到下一次迭代 if NC >= 2 Tabu(1,:) = R_best(NC-1,:); end %% 第4步:记录本次迭代最佳路线 L = zeros(m, 1); % 开始距离为0,m*1的列向量 for i = 1:m R = Tabu(i, :); for j = 1:(n - 1) L(i) = L(i) + D(R(j), R(j + 1)); % 原距离加上第j个城市到第j+1个城市的距离 end L(i) = L(i) + D(R(1), R(n)); % 一轮下来后走过的距离 end L_best(NC) = min(L); % 最佳距离取最小 pos = find(L == L_best(NC)); R_best(NC, :) = Tabu(pos(1), :); % 此轮迭代后的最佳路线 % 找到路径最短的那条蚂蚁所在的城市先后顺序 % pos(1)中1表示万一有长度一样的两条蚂蚁,那就选第一个 L_ave(NC) = mean(L); % 此轮迭代后的平均距离 NC = NC + 1; % 迭代继续 %% 第5步:更新信息素 Delta_Tau = zeros(n, n); % 开始时信息素为n*n的0矩阵 for i = 1:m R = Tabu(i, [1:n, 1]); indices = sub2ind(size(Delta_Tau), R(1:end-1), R(2:end)); Delta_Tau(indices) = Delta_Tau(indices) + Q ./ L(i); end % 此次循环在路径(i,j)上的信息素增量 Tau = (1 - Rho) .* Tau + Delta_Tau; %% 第6步:禁忌表清零 Tabu = zeros(m, n); % 直到最大迭代次数 end %% 第7步:输出结果 Pos = find(L_best == min(L_best)); Shortest_Route = R_best(Pos(1), :); Shortest_Length = L_best(Pos(1)); displayResults(Citys, Shortest_Route, Shortest_Length, L_best, L_ave) disp(['最短距离:' num2str(Shortest_Length)]); disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]); %% 函数部分 function D = distanceMatrix(C) n = size(C, 1); D = zeros(n, n); for i = 1:n for j = 1:n if i ~= j D(i, j) = norm(C(i, :) - C(j, :)); else D(i, j) = eps; end D(j, i) = D(i, j); end end end function displayResults(Citys, Shortest_Route, Shortest_Length, L_best, L_ave) figure(1) N = length(Shortest_Route); scatter(Citys(:, 1), Citys(:, 2)); hold on; R = [Shortest_Route, Shortest_Route(1)]; for ii = 1:N plot(Citys(R(ii:ii+1), 1), Citys(R(ii:ii+1), 2),'o-', 'LineWidth',1.5); hold on; end text(Citys(Shortest_Route(1), 1), Citys(Shortest_Route(1), 2), ' 起点'); text(Citys(Shortest_Route(end), 1), Citys(Shortest_Route(end), 2), ' 终点'); xlabel('城市位置横坐标'); ylabel('城市位置纵坐标'); title('蚁群算法优化旅行商问题'); grid on; figure(2) plot(1:length(L_best), L_best(1:end), 'b', 'LineWidth',1.5); hold on; plot(1:length(L_ave), L_ave(1:end), 'r', 'LineWidth',1.5); legend('最短距离', '平均距离'); xlabel('迭代次数'); ylabel('距离'); title('平均距离和最短距离'); end
最短距离:15609.4771 最短路径:15 14 12 13 11 23 16 5 6 7 2 4 8 9 10 3 18 17 19 24 25 20 21 22 26 28 27 30 31 29 1 15
clc; close all; clear % Initialize the parameters num_ants = 50; % Number of ants num_iterations = 200; % Number of iterations alpha = 1; % Importance of pheromone beta = 5; % Importance of heuristic information rho = 0.1; % Evaporation rate of pheromone coordinates = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;... 3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;... 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;... 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;... 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;... 2370 2975]; % Calculate distance matrix n = size(coordinates, 1); dist_matrix = zeros(n); % error statement!!! % start_city_custom = input(sprintf('Enter the starting city index (1 to %d): ', n)); % start_city = start_city_custom; for i = 1:n for j = i+1:n dist_matrix(i, j) = norm(coordinates(i, :) - coordinates(j, :)); dist_matrix(j, i) = dist_matrix(i, j); end end % Initialize the pheromone matrix pheromone = ones(n, n); % Start the iterations best_distance = inf; best_path = []; for i = 1:num_iterations paths = zeros(num_ants, n + 1); path_lengths = zeros(num_ants, 1); % For each ant for j = 1:num_ants start_city = randi(n); paths(j, 1) = start_city; for step = 2:n current_city = paths(j, step - 1); not_visited = setdiff(1:n, paths(j, 1:step - 1)); prob = (pheromone(current_city, not_visited) .^ alpha) .* ((1 ./ dist_matrix(current_city, not_visited)) .^ beta); probabilities = prob / sum(prob); next_city = not_visited(randsample(length(not_visited), 1, true, probabilities)); paths(j, step) = next_city; end paths(j, n + 1) = paths(j, 1); path_lengths(j) = sum(dist_matrix(sub2ind(size(dist_matrix), paths(j, 1:n), paths(j, 2:n + 1)))); if path_lengths(j) < best_distance best_distance = path_lengths(j); best_path = paths(j, :); end end % Update the pheromone matrix pheromone = (1 - rho) * pheromone; for j = 1:num_ants for step = 1:n pheromone(paths(j, step), paths(j, step + 1)) = ... pheromone(paths(j, step), paths(j, step + 1)) + 1 / path_lengths(j); end end end % Print the best path num_cities = size(coordinates, 1); fprintf('Optimal path:\n'); for j = 1:num_cities fprintf('%d -> ', best_path(j)); end fprintf('%d\n', best_path(1)); fprintf('Optimal distance: %f\n', best_distance); % { % start_city=randi(n)用于为每只蚂蚁随机选择起始城市。 % n 代表城市数,randi(n) 生成1到n(含)之间的随机整数。 % 蚂蚁从不同的城市开始,这增加了探索解决方案的多样性,有助于防止算法陷入局部最优。 % }
Optimal path: 14 -> 12 -> 13 -> 11 -> 23 -> 16 -> 5 -> 6 -> 7 -> 2 -> 4 -> 8 -> 9 -> 10 -> 3 -> 18 -> 17 -> 19 -> 24 -> 25 -> 20 -> 21 -> 22 -> 26 -> 28 -> 27 -> 30 -> 31 -> 29 -> 1 -> 15 -> 14 Optimal distance: 15609.477144
clc; close all; clear % Coordinates of 31 provincial capital cities in China coords = [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;... 3238 1229;4196 1044;4312 790;4386 570;3007 1970;2562 1756;... 2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;... 3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2376;... 3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;... 2370 2975]; % Calculate distance matrix n = size(coords, 1); dist_matrix = zeros(n); for i = 1:n for j = i+1:n dist_matrix(i, j) = norm(coords(i, :) - coords(j, :)); dist_matrix(j, i) = dist_matrix(i, j); end end % Initialize ACO parameters n_ants = 50; n_iterations = 200; alpha = 1; beta = 5; rho = 0.1; Q = 100; % ACO algorithm [best_path, best_dist, avg_dists, best_dists] = ACO(dist_matrix, n_ants, n_iterations, alpha, beta, rho, Q); % Display the optimal path and its distance disp("Optimal path:"); optimal_path_str = join(string(best_path), "->"); disp(optimal_path_str); disp("Optimal distance:"); % disp(best_dist); fprintf('%.6f\n', best_dist); % Plot the cities and the optimal path figure; plot(coords(:, 1), coords(:, 2), 'o'); hold on; plot(coords(best_path, 1), coords(best_path, 2), '-'); title('Cities and the Optimal Path'); xlabel('X Coordinate'); ylabel('Y Coordinate'); grid on; % Annotate city numbers for i = 1:n text(coords(i, 1), coords(i, 2), num2str(i), 'HorizontalAlignment', 'left', 'VerticalAlignment', 'bottom'); end % Plot the convergence curves figure; plot(1:n_iterations, best_dists, 'b-', 1:n_iterations, avg_dists, 'r-'); title('Convergence Curves'); xlabel('Number of Iterations'); ylabel('Path Distance'); legend('Best Path', 'Average Path'); grid on; % ACO function function [best_path, best_dist, avg_dists, best_dists] =... ACO(dist_matrix, n_ants, n_iterations, alpha, beta, rho, Q) n = size(dist_matrix, 1); best_path = zeros(1, n + 1); best_dist = Inf; avg_dists = zeros(1, n_iterations); best_dists = zeros(1, n_iterations); pheromone_matrix = ones(n, n); visibility_matrix = 1 ./ dist_matrix; for iter = 1:n_iterations paths = zeros(n_ants, n + 1); path_lengths = zeros(n_ants, 1); for ant = 1:n_ants start_city = randi(n); paths(ant, 1) = start_city; for step = 2:n current_city = paths(ant, step - 1); not_visited = setdiff(1:n, paths(ant, 1:step - 1)); prob = (pheromone_matrix(current_city, not_visited) .^ alpha) .*... (visibility_matrix(current_city, not_visited) .^ beta); next_city = not_visited(randsample(length(not_visited), 1, true, prob / sum(prob))); paths(ant, step) = next_city; end paths(ant, n + 1) = paths(ant, 1); path_lengths(ant) = sum(dist_matrix(sub2ind(size(dist_matrix), paths(ant, 1:n), paths(ant, 2:n + 1)))); if path_lengths(ant) < best_dist best_dist = path_lengths(ant); best_path = paths(ant, :); end end % Update pheromone matrix pheromone_matrix = (1 - rho) * pheromone_matrix; for ant = 1:n_ants for step = 1:n pheromone_matrix(paths(ant, step), paths(ant, step + 1)) = ... pheromone_matrix(paths(ant, step), paths(ant, step + 1)) + Q / path_lengths(ant); end end % Calculate average path length and record the best distance avg_dists(iter) = mean(path_lengths); best_dists(iter) = best_dist; end end
Optimal path: 15->14->12->13->11->23->16->5->6->7->2->4->8->9->10->3->18->17->19->24->25->20->21->22->26->28->27->30->31->29->1->15 Optimal distance: 15609.477144