ElasticSearch是一个实时的分布式搜索与分析引擎,常用于大量非结构化数据的存储和快速检索场景,具有很强的扩展性。纵使其有诸多优点,在搜索领域远超关系型数据库,但依然存在与关系型数据库同样的深度分页问题,本文就此问题做一个实践性分析探讨
from + size分页方式是ES最基本的分页方式,类似于关系型数据库中的limit方式。from参数表示:分页起始位置;size参数表示:每页获取数据条数。例如:
GET /wms_order_sku/_search { "query": { "match_all": {} }, "from": 10, "size": 20 }
该条DSL语句表示从搜索结果中第10条数据位置开始,取之后的20条数据作为结果返回。这种分页方式在ES集群内部是如何执行的呢?
在ES中,搜索一般包括2个阶段,Query阶段和Fetch阶段,Query阶段主要确定要获取哪些doc,也就是返回所要获取doc的id集合,Fetch阶段主要通过id获取具体的doc。
如上图所示,Query阶段大致分为3步:
如上图所示,当Query阶段结束后立马进入Fetch阶段,Fetch阶段也分为3步:
依据上述我们对from + size分页方式两阶段的分析会发现,假如起始位置from或者页条数size特别大时,对于数据查询和coordinating node结果合并都是巨大的性能损耗。
例如:索引 wms_order_sku 有1亿数据,分10个shard存储,当一个请求的from = 1000000, size = 10。在Query阶段,每个shard就需要返回1000010条数据的_id和_score信息,而coordinating node就需要接收10 * 1000010条数据,拿到这些数据后需要进行全局排序取到前1000010条数据的_id集合保存到coordinating node的优先级队列中,后续在Fetch阶段再去获取那10条数据的详情返回给客户端。
分析:这个例子的执行过程中,在Query阶段会在每个shard上均有巨大的查询量,返回给coordinating node时需要执行大量数据的排序操作,并且保存到优先级队列的数据量也很大,占用大量节点机器内存资源。
private SearchHits getSearchHits(BoolQueryBuilder queryParam, int from, int size, String orderField) { SearchRequestBuilder searchRequestBuilder = this.prepareSearch(); searchRequestBuilder.setQuery(queryParam).setFrom(from).setSize(size).setExplain(false); if (StringUtils.isNotBlank(orderField)) { searchRequestBuilder.addSort(orderField, SortOrder.DESC); } log.info("getSearchHits searchBuilder:{}", searchRequestBuilder.toString()); SearchResponse searchResponse = searchRequestBuilder.execute().actionGet(); log.info("getSearchHits searchResponse:{}", searchResponse.toString()); return searchResponse.getHits(); }
标签:ElasticSearch,搜索,数据,优点,分析,DSL,Query 来源:
本站声明: 1. iCode9 技术分享网(下文简称本站)提供的所有内容,仅供技术学习、探讨和分享; 2. 关于本站的所有留言、评论、转载及引用,纯属内容发起人的个人观点,与本站观点和立场无关; 3. 关于本站的所有言论和文字,纯属内容发起人的个人观点,与本站观点和立场无关; 4. 本站文章均是网友提供,不完全保证技术分享内容的完整性、准确性、时效性、风险性和版权归属;如您发现该文章侵犯了您的权益,可联系我们第一时间进行删除; 5. 本站为非盈利性的个人网站,所有内容不会用来进行牟利,也不会利用任何形式的广告来间接获益,纯粹是为了广大技术爱好者提供技术内容和技术思想的分享性交流网站。