本文主要包含算法竞赛一些常用的板子,码风可能不是太好,还请见谅。
后续会继续补充没有的板子。当然我太菜了有些可能写不出来T^T
稍微有些分类但不多,原谅我QwQ
建议 Ctrl
+ F
以快速查找板子。
此处为查询区间和的树状数组。
int bit[500010]; void add(int k, int x) { while (k <= n) { bit[k] += x; k += lowbit(k); } } int ask(int k) { int res = 0; while (k) { res += bit[k]; k -= lowbit(k); } return res; }
此处为区间修改区间查询区间和的线段树。
struct SegmentTree { ll sum[N << 2], lazy[N << 2]; int l[N << 2], r[N << 2]; void update(int rt) { sum[rt] = sum[rt << 1] + sum[rt << 1 | 1]; } void pushdown(int rt) { if (!lazy[rt]) return ; sum[rt << 1] += (r[rt << 1] - l[rt << 1] + 1) * lazy[rt], lazy[rt << 1] += lazy[rt]; sum[rt << 1 | 1] += (r[rt << 1 | 1] - l[rt << 1 | 1] + 1) * lazy[rt], lazy[rt << 1 | 1] += lazy[rt]; lazy[rt] = 0; update(rt); } void build(int rt, int L, int R) { l[rt] = L, r[rt] = R; if (L == R) { sum[rt] = a[L]; return ; } int mid = L + R >> 1; build(rt << 1, L, mid), build(rt << 1 | 1, mid + 1, R); update(rt); } void change(int rt, int L, int R, int x) { if (L <= l[rt] && r[rt] <= R) { sum[rt] += (r[rt] - l[rt] + 1) * x; lazy[rt] += x; return ; } pushdown(rt); if (L <= r[rt << 1]) change(rt << 1, L, R, x); if (l[rt << 1 | 1] <= R) change(rt << 1 | 1, L, R, x); update(rt); } ll query(int rt, int L, int R) { if (L <= l[rt] && r[rt] <= R) return sum[rt]; pushdown(rt); ll res = 0; if (L <= r[rt << 1]) res += query(rt << 1, L, R); if (l[rt << 1 | 1] <= R) res += query(rt << 1 | 1, L, R); return res; } } tree;
不是吧真有人手写堆吗
ll q[N], cnt; void pushup(int id) { while (id > 1) { if (q[id] >= q[id >> 1]) break; swap(q[id], q[id >> 1]); id >>= 1; } } void movedown() { int id = 1; while (id << 1 <= cnt) { if ((id << 1 | 1) <= cnt) { if (q[id] < min(q[id << 1], q[id << 1 | 1])) break;; if (q[id << 1] < q[id << 1 | 1]) swap(q[id], q[id << 1]), id <<= 1; else swap(q[id], q[id << 1 | 1]), id = id << 1 | 1; } else { if (q[id] > q[id << 1]) swap(q[id], q[id << 1]); break; } } } void add(ll x) { q[++cnt] = x; pushup(cnt); } void pop() { swap(q[1], q[cnt]); cnt--; movedown(); }
struct Disjoint_Set { int p[N], size[N]; void build() { for (int i = 1; i <= n; i++) p[i] = i, size[i] = 1; } int root(int x) { if (p[x] != x) return p[x] = root(p[x]); return x; } void merge(int x, int y) { x = root(x), y = root(y); if (size[x] > size[y]) swap(x, y); p[x] = y; size[y] += size[x]; } bool check(int x, int y) { x = root(x), y = root(y); return x == y; } } a;
代码实现查询区间 [l,r][l,r] 的区间最大值
for (int i = 1; i <= n; i++) st[0][i] = a[i]; for (int j = 1; j <= lg; j++) { for (int i = 1; i <= n - (1 << j) + 1; i++) { st[j][i] = max(st[j - 1][i], st[j - 1][i + (1 << (j - 1))]); } } int l, r, lg2, len; for (int i = 1; i <= m; i++) { l = read(), r = read(); lg2 = log2(r - l + 1); len = 1 << lg2; printf("%d\n", max(st[lg2][l], st[lg2][r - len + 1])); }
const int N = 100010; int last[N], cnt; struct edge { int to, next, w; } e[N << 1]; void addedge(int x, int y, int w) { e[++cnt].to = y; e[cnt].next = last[x]; e[cnt].w = w; last[x] = cnt; }
此处贴的是 Tarjan法 求LCA。更多方法
struct Disjoint_Set { int p[N], size[N]; void build() { for (int i = 1; i <= n; i++) p[i] = i, size[i] = 1; } int root(int x) { if (p[x] != x) return p[x] = root(p[x]); return x; } void merge(int x, int y) { x = root(x), y = root(y); if (size[x] > size[y]) swap(x, y); p[x] = y; size[y] += size[x]; } bool check(int x, int y) { x = root(x), y = root(y); return x == y; } } a; int last[N], cnt; struct edge { int to, next; } e[N << 1]; void addedge(int x, int y) { e[++cnt].to = y; e[cnt].next = last[x]; last[x] = cnt; } struct node { int x, y, ans; } ask[N]; vector <int> g[N]; int p[N]; bool vis[N]; int r[N]; void dfs(int x, int f) { p[x] = f; for (int i = last[x]; i; i = e[i].next) { int v = e[i].to; if (v == f) continue; vis[v] = 1; for (int j : g[v]) { int o = ask[j].x; if (o == v) o = ask[j].y; if (!vis[o]) continue; ask[j].ans = r[a.root(o)]; } dfs(v, x); a.merge(x, v); r[a.root(x)] = x; } }
这里是堆优化版呢。笑了有些时候堆优化还没不优化好
void dij(int s) { priority_queue <pii, vector<pii>, greater<pii> > q; memset(dis, 0x7f7f7f7f, sizeof(dis)); q.push({0, s}); dis[s] = 0; while (!q.empty()) { pii u = q.top(); q.pop(); int pos = u.second; if (vis[pos]) continue; vis[pos] = 1; for (int j = last[pos]; j; j = e[j].next) { int v = e[j].to; if (vis[v]) continue; if (dis[pos] + e[j].w < dis[v]) dis[v] = dis[pos] + e[j].w, q.push({dis[v], v}); } }
其中 pp 为缩点后的新点。
int dfn[N], low[N], dcnt; bool instack[N]; stack <int> s; int p[N], h[N]; void dfs(int x, int f) { instack[x] = 1; s.push(x); dfn[x] = low[x] = ++dcnt; for (int i = last[0][x]; i; i = e[0][i].next) { int v = e[0][i].to; if (dfn[v]) { if (instack[v]) low[x] = min(low[x], dfn[v]); continue; } dfs(v, x); low[x] = min(low[x], low[v]); } if (low[x] >= dfn[x]) { p[x] = x, h[x] = a[x], instack[x] = 0; while (s.top() != x) { p[s.top()] = x; h[x] += a[s.top()]; instack[s.top()] = 0; s.pop(); } s.pop(); } }
int st[N], ed[N]; struct edge { int u, v; } e[N << 1]; int rd[N], cd[N]; bool cmp(edge x, edge y) { if (x.u != y.u) return x.u < y.u; return x.v < y.v; } int ans[N << 1], cnt; void dfs(int x) { while (st[x] <= ed[x]) { st[x]++; dfs(e[st[x] - 1].v); } ans[++cnt] = x; }
fac[0] = fac[1] = 1; for (int i = 2; i <= n; i++) fac[i] = fac[i - 1] * i % mod; inv[1] = 1; for (int i = 2; i <= n; i++) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
ll qpow(ll a, ll b) { ll res = 1; while (b) { if (b & 1) res = res * a % mod; a = a * a % mod; b >>= 1; } return res; }
不是我说这写的是真的丑,凑活着看吧QAQ
struct sq { ll x[110][110]; void build() { for (int i = 1; i <= n; i++) x[i][i] = 1; } void dd() { for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) x[i][j] = 0; } } a, ans; sq operator *(const sq &x, const sq &y) { sq res; res.dd(); for (int k = 1; k <= n; k++) for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) res.x[i][j] = (res.x[i][j] + x.x[i][k] * y.x[k][j] % mod) % mod; return res; } void qpow(ll x) { while (x) { if (x & 1) ans = ans * a; a = a * a; x >>= 1; } }
pp 数组表示基底,xx 为添加进的数字。
int p[N]; void add(ll x) { for (int i = N; i >= 0; i--) { if (!(x & (1ll << i))) continue; if (p[i]) x ^= p[i]; else {p[i] = x; return ;} } }
int prime[6000010], cnt; bool isprime[N + 10]; void prim() { isprime[0] = isprime[1] = 1; for (int i = 2; i <= n; i++) { if (!isprime[i]) prime[++cnt] = i; for (int j = 1; j <= cnt && i * prime[j] <= n; j++) { isprime[i * prime[j]] = 1; if (i % prime[j] == 0) break; } } }
int Char(char c) { if (c >= '0' && c <= '9') return c - '0' + 1; //0~9: 1~10 if (c >= 'a' && c <= 'z') return c - 'a' + 11; //a~z: 11~37 if (c >= 'A' && c <= 'Z') return c - 'A' + 38; //A~Z: 38~65 return 0; } map <ll, int> mp; cin >> s; ll x = 0; for (int i = 0; i < s.size(); i++) x = (x * 100) + Char(s[i]); mp[x] = 1;
ss 和 tt 为需要匹配的两个 char
类型数组。
borderiborderi 表示 tt 长度为 ii 的前缀最长的 borderborder 长度。
完了border是啥来着?
ls = strlen(s + 1), lt = strlen(t + 1); int j = 0; for (int i = 2; i <= lt; i++) { while (j >= 1 && t[j + 1] != t[i]) j = border[j]; if (t[j + 1] == t[i]) j++; border[i] = j; } int sx = 1, tx = 0; while (sx <= ls) { while (tx >= 1 && s[sx] != t[tx + 1]) tx = border[tx]; if (t[tx + 1] == s[sx]) tx++; if (tx == lt) printf("%d\n", sx - lt + 1); sx++; }
struct Trie { int id[27], cnt, fail; } t[N]; void Build(string &s) { int now = 0; for (int i = 0; i < s.size(); i++) { if (!t[now].id[s[i] - 'a']) t[now].id[s[i] - 'a'] = ++cnt; now = t[now].id[s[i] - 'a']; } t[now].cnt++; } void Fail() { queue <int> q; for (int i = 0; i < 26; i++) { int v = t[0].id[i]; if (v != 0) { t[v].fail = 0; q.push(v); } } while (!q.empty()) { int u = q.front(); q.pop(); for (int i = 0; i < 26; i++) { int v = t[u].id[i]; if (v != 0) { t[v].fail = t[t[u].fail].id[i]; q.push(v); } else t[u].id[i] = t[t[u].fail].id[i]; } } } string s; int ans; void Query() { int now = 0; for (int i = 0; i < s.size(); i++) { now = t[now].id[s[i] - 'a']; for (int to = now; to; to = t[to].fail) { if (t[to].cnt == -1) break; ans += t[to].cnt; t[to].cnt = -1; } } }