(可能书写格式不太规范)
\((2)\)
证明:
\(b\ln a-a\ln b=a - b\)
\(\Rightarrow\frac{1}{a}(1-\ln \frac{1}{a})=\frac{1}{b}(1-\ln \frac{1}{b})\)
不妨设 \(\frac{1}{a}<\frac{1}{b}\)
由\((1)\)易知\(\frac{1}{a}\in (0,1),\frac{1}{b}\in (1,e)\)
记\(p(x)\)为方程\(f[p(x)]=f(x),p(x)>x\)的根
其中\(x\in (0,1)\)
要证:\(\frac{1}{a}+\frac{1}{b}\in (2,e)\)
即证:\(x+p(x)\in (2,e),(0<x<1)\)
先证:
$$\forall x\in (0,1),t\in (0,x)$$
$$p(x-t)>p(x)+t$$
\(\because x-t<1,x<1\)
\(\therefore p(x-t)>1,p(x)>1即p(x)+t>1\)
由函数单调性可得即证:
可知:\(f[p(x-t)]=f(x-t)\)
即证:
$$f(x-t)<f[p(x)+t]$$
令\(g(t)=f(x-t)-f(p(x)+t)\)
化简得:
\[g^\prime(t)=\ln(x-t)(p(x)+t) \]令\(h(t)=(x-t)\big(p(x)+t\big)\)
可知改二次函数对称轴:\(x=\frac{x-p(x)}{2}<0\)
故当\(t\in (0,x)\)时
\(h(t)<h(0)=x\cdot p(x)\)
下证:\(x\cdot p(x)<1\)
即证:\(p(x)<\frac{1}{x}\)
可知\(\frac{1}{x}\in (1,+\infty),p(x)\in (1,e)\)
此时\(f(x)\)为减函数
即证:\(f(p(x))>f(\frac{1}{x})\)
即证:\(f(x)>f(\frac{1}{x})\)
令\(F(x)=f(x)-f(\frac{1}{x}),(0<x<1)\)
\(F^\prime(x)=-\frac{x^2-1}{x^2}\ln x\)
易知\(F^\prime(x)此时<0,即F(x)单调递减\)
故\(F(x)>F(1)=0,(0<x<1)\)
故\(f(x)>f(\frac{1}{x})\)成立
\(\Rightarrow p(x)<\frac{1}{x}\)
\(\Rightarrow x\cdot p(x)<1\)
故\(h(t)<h(0)=x\cdot p(x)<1\)
故\(g^\prime(t)此时小于0\)
故\(g(t)在(0,x)上单调递减\)
\(g(t)<g(0)=0\)
\(\Rightarrow f(x-t)<f\big(p(x)+t\big)\)
\(\Rightarrow p(x-t)>p(x)+t\)
故 \(G(x)=x+p(x)\)在 \((0,1)\)上单调递减
故 \(G(x)\in (2,e)\)
故 \(\frac{1}{a}+\frac{1}{b}\in (2,e)\)