给定一个\(N\)个点\(M\)条边的无向图。
有\(2^N\)种方式将每个节点染成红色或者蓝色。求满足下列条件的染色方案数:
题目链接:https://atcoder.jp/contests/abc262/tasks/abc262_e
\(2 \leq N \leq 2 \times 10^5\)
\(1 \leq M \leq 2 \times 10^5\)
\(0 \leq K \leq N\)
考虑染成红色节点的度数和。令\(S\)为红色节点的度数和,\(R\)为两段点都为红色的边数,\(D\)为两段点为不同颜色的边数,则有:\(S = 2R+D\)
由于\(D\)为偶数,因此\(S\)也为偶数。因此有偶数个红色点的度数为奇数。
因此,可以通过枚举红色点中奇度点的个数进行计数。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const int N = 200010, mod = 998244353; ll n, m, k; ll deg[N]; ll fac[N], infac[N]; ll qmi(ll a, ll b) { ll res = 1; while(b) { if(b & 1) res = res * a % mod; b >>= 1; a = a * a % mod; } return res; } void init() { fac[0] = infac[0] = 1; for(int i = 1; i < N; i ++) { fac[i] = fac[i - 1] * i % mod; infac[i] = infac[i - 1] * qmi(i, mod - 2) % mod; } } ll C(ll a, ll b) { return fac[a] * infac[b] % mod * infac[a - b] % mod; } int main() { scanf("%lld%lld%lld", &n, &m, &k); for(int i = 0; i < m; i ++) { int a, b; scanf("%d%d", &a, &b); deg[a] ++, deg[b] ++; } ll odd = 0, even = 0; for(int i = 1; i <= n; i ++) { if(deg[i] % 2) odd ++; else even ++; } init(); ll res = 0; for(int i = 0; i <= k; i += 2) { if(i > odd) break; if(k - i <= even) res = (res + C(odd, i) * C(even, k - i) % mod) % mod; } printf("%lld\n", res); return 0; }