观察可得:对于某个时刻,贪心删当前代价最小的点肯定是最优的。
但是删一个点会减少相邻接的点的代价。然后就想到了堆,但是这个堆需要支持decrease-key操作。
decrease-key 这个操作std::priority_queue
并不支持,但是其实二叉堆也能做到 \(O(\log n)\)。
pbds 里的堆支持decrease-key,接口为 modify
,然后就完事了。
这个是官方题解给出的做法,大概就是二分答案,然后通过搜索把代价小于等于当前二分的值的点都删掉,如果所有点都能删掉说明当前二分的代价可行。
// Problem: E - Erasing Vertices 2 // Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267) // URL: https://atcoder.jp/contests/abc267/tasks/abc267_e // Memory Limit: 1024 MB // Time Limit: 4000 ms // // Powered by CP Editor (https://cpeditor.org) #include <bits/stdc++.h> #define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0); #ifdef BACKLIGHT #include "debug.h" #else #define logd(...) ; #define ASSERT(x) ; #define serialize() "" #endif using i64 = int64_t; using u64 = uint64_t; void Initialize(); void SolveCase(int Case); int main(int argc, char* argv[]) { CPPIO; int T = 1; // std::cin >> T; for (int t = 1; t <= T; ++t) { SolveCase(t); } return 0; } void Initialize() {} #include <ext/pb_ds/priority_queue.hpp> template <typename T> using min_heap = __gnu_pbds::priority_queue<T, std::greater<T>, __gnu_pbds::pairing_heap_tag>; void SolveCase(int Case) { int n, m; std::cin >> n >> m; std::vector<int> a(n); for (int i = 0; i < n; ++i) { std::cin >> a[i]; } std::vector<std::vector<int>> g(n); for (int i = 0; i < m; ++i) { int u, v; std::cin >> u >> v; --u, --v; g[u].push_back(v); g[v].push_back(u); } std::vector<i64> s(n); for (int i = 0; i < n; ++i) { for (int v : g[i]) s[v] += a[i]; } min_heap<std::pair<i64, int>> q; std::vector<min_heap<std::pair<i64, int>>::point_iterator> p(n); for (int i = 0; i < n; ++i) { p[i] = q.push({s[i], i}); } i64 ans = 0; while (!q.empty()) { auto [cost, id] = q.top(); q.pop(); ans = std::max(ans, cost); p[id] = nullptr; for (int v : g[id]) { if (p[v] == nullptr) continue; auto [first, second] = *p[v]; q.modify(p[v], {first - a[id], second}); } } std::cout << ans << "\n"; }
有个结论:假设树的直径的两个端点分别为 \(a\) 和 \(b\),那么对于树中任意一点 \(u\) ,\(a\) 和 \(b\) 中之一必定满足其是树中所有点中离\(u\)距离最大的点。用反证法可以证明。
由此,对于某个询问\(u, k\),要么能在 \(u\) 到 \(a\) 或 \(u\) 到 \(b\) 的路径中找到答案,要么无解。
想着把直径端点之一搞成根,此时直径是一条一端为根一端为叶子的链。
对于一个点,往父亲的方向条一定会跳到这条链上。
然后先跳到这条链上,假设此时位于\(u\),那么\(u\)所在的长链一定是直径,这个时候再枚举往父亲的方向跳,还是往长链的方向条,就能枚举到\(u\) 到 \(a\) 和 \(u\) 到 \(b\) 的路径。
往父亲的方向跳和往长链的方向条都可以用倍增加速。
这个是官方题解给出的做法,大概就是离线然后分别以 \(a\) 和 \(b\) 作为根,一共跑两次,这样就只需要考虑往父亲的方向跳的情况,也能枚举到\(u\) 到 \(a\) 和 \(u\) 到 \(b\) 的路径,而且相对做法1会简单一点。
// Problem: F - Exactly K Steps // Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267) // URL: https://atcoder.jp/contests/abc267/tasks/abc267_f // Memory Limit: 1024 MB // Time Limit: 2000 ms // // Powered by CP Editor (https://cpeditor.org) #include <bits/stdc++.h> #define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0); #ifdef BACKLIGHT #include "debug.h" #else #define logd(...) ; #define ASSERT(x) ; #define serialize() "" #endif using i64 = int64_t; using u64 = uint64_t; void Initialize(); void SolveCase(int Case); int main(int argc, char* argv[]) { CPPIO; int T = 1; // std::cin >> T; for (int t = 1; t <= T; ++t) { SolveCase(t); } return 0; } void Initialize() {} void SolveCase(int Case) { int n, m = 20; std::cin >> n; std::vector<std::vector<int>> g(n); for (int i = 0; i < n - 1; ++i) { int u, v; std::cin >> u >> v; --u, --v; g[u].push_back(v); g[v].push_back(u); } // make one end of diameter the root. std::vector<int> dep(n), f(n); int rt = 0; std::function<void(int, int, int)> dfs1 = [&](int u, int fa, int depth) { dep[u] = depth; f[u] = fa; if (dep[u] > dep[rt]) rt = u; for (int v : g[u]) { if (v == fa) continue; dfs1(v, u, depth + 1); } }; dfs1(0, 0, 0); int temp = rt; dfs1(rt, rt, 0); rt = temp; logd(rt); logd(dep); // binary lifting for k-th ancester. std::vector<std::vector<int>> up(n, std::vector<int>(m)); std::function<void(int, int)> dfs2 = [&](int u, int fa) { if (u == rt) { std::fill(up[u].begin(), up[u].end(), rt); } else { up[u][0] = fa; for (int i = 1; i < m; ++i) { up[u][i] = up[up[u][i - 1]][i - 1]; } } for (int v : g[u]) { if (v == fa) continue; dfs2(v, u); } }; dfs2(rt, rt); logd(up); // binary lifting for longest chain in subtree. std::vector<int> len(n), son(n); std::vector<std::vector<int>> down(n, std::vector<int>(m)); std::function<void(int, int)> dfs3 = [&](int u, int fa) { son[u] = -1; len[u] = 0; for (int v : g[u]) { if (v == fa) continue; dfs3(v, u); if (son[u] == -1 || len[v] > len[son[u]]) { son[u] = v; len[u] = len[v] + 1; } } if (son[u] == -1) { std::fill(down[u].begin(), down[u].end(), u); } else { down[u][0] = son[u]; for (int i = 1; i < m; ++i) { down[u][i] = down[down[u][i - 1]][i - 1]; } } }; dfs3(rt, rt); std::vector<int> in_diameter(n, false); { int x = rt; while (x != -1) { in_diameter[x] = true; x = son[x]; } } // return v whose distance from u is k by: // - jump up in the path to root. // - jump down in the longest chain in subtree whose root is u. auto Q = [&](int u, int k) { if (dep[u] >= k) { int x = u; for (int i = m - 1; i >= 0; --i) { if ((k >> i) & 1) x = up[x][i]; } return x + 1; } if (len[u] >= k) { int x = u; for (int i = m - 1; i >= 0; --i) { if ((k >> i) & 1) x = down[x][i]; } return x + 1; } return -1; }; int q; std::cin >> q; for (int _ = 0; _ < q; ++_) { int u, k, r; std::cin >> u >> k; --u; r = Q(u, k); if (r != -1) { std::cout << r << "\n"; continue; } if (in_diameter[u]) { std::cout << "-1\n"; continue; } int y = u; for (int i = m - 1; i >= 0; --i) { if (not in_diameter[up[y][i]]) y = up[y][i]; } y = f[y]; k -= dep[u] - dep[y]; u = y; std::cout << Q(u, k) << "\n"; } }
问题转换成 \(a\) 有多少个排列 \(A\) 满足恰好有 \(k\) 个 \(i\) 满足\(A_i < A_{i + 1}\)。
考虑从小到大把 \(a\) 中的元素加入 \(A\) ,从而构成一个 \(a\) 的排列 \(A\) 。为了防止边界条件的讨论,不妨令初始时 \(A = [0, 0]\),然后再加入元素。这样相比原本的情况中会多算一个满足\(A_i < A_{i + 1}\) 的 \(i\),因为 \(A_n\) 一定大于 \(0\) ,此时改成求恰好有 \(k + 1\) 个满足条件的\(i\)即可。
然后考虑动态规划,令 \(dp_{i, j}\) 表示插入前 \(i\) 个元素,恰好有 \(j\) 个 \(x\) 满足 \(A_x < A_{x + 1}\)。
假设现在要插入\(y\),这个操作要么令满足条件的 \(x\) 的数量保持不变,要么令满足条件的 \(x\) 的数量增加一。
什么时候会增加呢,只有将 \(y\) 插到满足 \(A_{x} \ge A_{x + 1}\) 的 \(A_x\) 之后才会令满足条件的 \(x\) 的数量增加。假设之前已经插入了 \(i\) 个元素,有 \(j\) 个满足条件的 \(x\),然后插入了 \(z\) 个 \(y\),那么一共有 \(i - j - z\) 个位置,将 \(y\) 插到这个位置会使满足条件的 \(x\) 数量增加一,剩余 \(j + z\) 个位置会使满足条件的 \(x\) 数量保持不变。
// Problem: G - Increasing K Times // Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267) // URL: https://atcoder.jp/contests/abc267/tasks/abc267_g // Memory Limit: 1024 MB // Time Limit: 2000 ms // // Powered by CP Editor (https://cpeditor.org) #include <bits/stdc++.h> #define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0); #ifdef BACKLIGHT #include "debug.h" #else #define logd(...) ; #define ASSERT(x) ; #define serialize() "" #endif using i64 = int64_t; using u64 = uint64_t; void Initialize(); void SolveCase(int Case); int main(int argc, char* argv[]) { CPPIO; int T = 1; // std::cin >> T; for (int t = 1; t <= T; ++t) { SolveCase(t); } return 0; } void Initialize() {} template <typename ValueType, ValueType mod_, typename SupperType = int64_t> class Modular { private: ValueType value_; ValueType normalize(ValueType value) const { if (value >= 0 && value < mod_) return value; value %= mod_; if (value < 0) value += mod_; return value; } ValueType power(ValueType value, size_t exponent) const { ValueType result = 1; ValueType base = value; while (exponent) { if (exponent & 1) result = SupperType(result) * base % mod_; base = SupperType(base) * base % mod_; exponent >>= 1; } return result; } public: Modular() : value_(0) {} Modular(const ValueType& value) : value_(normalize(value)) {} ValueType value() const { return value_; } Modular inv() const { return Modular(power(value_, mod_ - 2)); } Modular power(size_t exponent) const { return Modular(power(value_, exponent)); } friend Modular operator+(const Modular& lhs, const Modular& rhs) { ValueType result = lhs.value() + rhs.value() >= mod_ ? lhs.value() + rhs.value() - mod_ : lhs.value() + rhs.value(); return Modular(result); } friend Modular operator-(const Modular& lhs, const Modular& rhs) { ValueType result = lhs.value() - rhs.value() < 0 ? lhs.value() - rhs.value() + mod_ : lhs.value() - rhs.value(); return Modular(result); } friend Modular operator*(const Modular& lhs, const Modular& rhs) { ValueType result = SupperType(1) * lhs.value() * rhs.value() % mod_; return Modular(result); } friend Modular operator/(const Modular& lhs, const Modular& rhs) { ValueType result = SupperType(1) * lhs.value() * rhs.inv().value() % mod_; return Modular(result); } }; template <typename StreamType, typename ValueType, ValueType mod, typename SupperType = int64_t> StreamType& operator<<(StreamType& out, const Modular<ValueType, mod, SupperType>& modular) { return out << modular.value(); } template <typename StreamType, typename ValueType, ValueType mod, typename SupperType = int64_t> StreamType& operator>>(StreamType& in, Modular<ValueType, mod, SupperType>& modular) { ValueType value; in >> value; modular = Modular<ValueType, mod, SupperType>(value); return in; } // using Mint = Modular<int, 1'000'000'007>; using Mint = Modular<int, 998'244'353>; class Binom { private: std::vector<Mint> f, g; public: Binom(int n) { f.resize(n + 1); g.resize(n + 1); f[0] = Mint(1); for (int i = 1; i <= n; ++i) f[i] = f[i - 1] * Mint(i); g[n] = f[n].inv(); for (int i = n - 1; i >= 0; --i) g[i] = g[i + 1] * Mint(i + 1); } Mint operator()(int n, int m) { if (n < 0 || m < 0 || m > n) return Mint(0); return f[n] * g[m] * g[n - m]; } }; void SolveCase(int Case) { int n, k; std::cin >> n >> k; ++k; std::vector<int> a(n + 1); for (int i = 1; i <= n; ++i) std::cin >> a[i]; std::sort(a.begin() + 1, a.end()); std::vector<int> same(n + 1); for (int i = 1; i <= n; ++i) { if (a[i] != a[i - 1]) same[i] = 0; else same[i] = same[i - 1] + 1; } std::vector<Mint> dp(k + 1, Mint(0)); dp[0] = Mint(1); for (int i = 1; i <= n; ++i) { std::vector<Mint> temp(k + 1, Mint(0)); for (int j = 0; j <= k; ++j) { temp[j] = temp[j] + Mint(j + same[i]) * dp[j]; if (j + 1 <= k) temp[j + 1] = temp[j + 1] + Mint(i - j - same[i]) * dp[j]; } dp = temp; } std::cout << dp[k].value() << "\n"; }
考虑动态规划,令 \(dp_{i, 0/1}\) 表示选奇数或者偶数个元素且所选元素之和为 \(i\) 的方案数,然后类似背包的DP就能求,但是复杂度爆炸。
考虑 \(f_{0}(x) = \sum_i a_i x^i\) ,\([x^i]f_0 (x)\)表示选偶数个元素且元素和为 \(i\) 的方案数,类似可得\(f_{1}(x)\)。
假设现在有两个数组,对应的多项式分别为\(f_{0/1}\)和\(g_{0/1}\),那么对于两个数组的并集对应的多项式\(h\)有:
\[h_0 = f_0 * g_0 + f_1 * g_1\\ h_1 = f_0 * g_1 + f_1 * g_0\\ \]把每个 \(a_i\) 都看成独立的数组,不断两两合并的到 \(a\),对应的多项式也两两合并,得到 \(a\) 对应的多项式\(f_{0/1}\),答案即为\([x^m]f_1\)。
用类似分治FFT的过程跑能做到\(O(m \log m \log n)\)的时间复杂度。
// Problem: Ex - Odd Sum // Contest: AtCoder - NEC Programming Contest 2022 (AtCoder Beginner Contest 267) // URL: https://atcoder.jp/contests/abc267/tasks/abc267_h // Memory Limit: 1024 MB // Time Limit: 4000 ms // // Powered by CP Editor (https://cpeditor.org) #include <bits/stdc++.h> #define CPPIO std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0); #ifdef BACKLIGHT #include "debug.h" #else #define logd(...) ; #define ASSERT(x) ; #define serialize() "" #endif using i64 = int64_t; using u64 = uint64_t; void Initialize(); void SolveCase(int Case); int main(int argc, char* argv[]) { CPPIO; int T = 1; // std::cin >> T; for (int t = 1; t <= T; ++t) { SolveCase(t); } return 0; } void Initialize() {} namespace Polynomial { constexpr int P = 998244353, G = 3; std::vector<int> rev, roots{0, 1}; int power(int a, int b) { int r = 1; while (b) { if (b & 1) r = 1ll * r * a % P; a = 1ll * a * a % P; b >>= 1; } return r; } void dft(std::vector<int>& a) { int n = a.size(); if (int(rev.size()) != n) { int k = __builtin_ctz(n) - 1; rev.resize(n); for (int i = 0; i < n; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << k; } for (int i = 0; i < n; ++i) if (rev[i] < i) std::swap(a[i], a[rev[i]]); if (int(roots.size()) < n) { int k = __builtin_ctz(roots.size()); roots.resize(n); while ((1 << k) < n) { int e = power(G, (P - 1) >> (k + 1)); for (int i = 1 << (k - 1); i < (1 << k); ++i) { roots[2 * i] = roots[i]; roots[2 * i + 1] = 1ll * roots[i] * e % P; } ++k; } } for (int k = 1; k < n; k *= 2) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; ++j) { int u = a[i + j]; int v = 1ll * a[i + j + k] * roots[k + j] % P; int x = u + v; if (x >= P) x -= P; a[i + j] = x; x = u - v; if (x < 0) x += P; a[i + j + k] = x; } } } } void idft(std::vector<int>& a) { int n = a.size(); std::reverse(a.begin() + 1, a.end()); dft(a); int inv = power(n, P - 2); for (int i = 0; i < n; ++i) a[i] = 1ll * a[i] * inv % P; } struct poly { std::vector<int> a; poly() {} poly(int f0) { a = {f0}; } poly(const std::vector<int>& f) : a(f) { while (!a.empty() && !a.back()) a.pop_back(); } poly(const std::vector<int>& f, int n) : a(f) { a.resize(n); } int size() const { return a.size(); } int deg() const { return a.size() - 1; } int operator[](int idx) const { if (idx < 0 || idx >= size()) return 0; return a[idx]; } std::string to_string() const { std::stringstream ss; ss << "poly: "; for (int v : a) ss << v << " "; return ss.str(); } poly mulxk(int k) const { auto b = a; b.insert(b.begin(), k, 0); return poly(b); } poly modxk(int k) const { k = std::min(k, size()); return poly(std::vector<int>(a.begin(), a.begin() + k)); } poly alignxk(int k) const { return poly(a, k); } poly divxk(int k) const { if (size() <= k) return poly(); return poly(std::vector<int>(a.begin() + k, a.end())); } friend poly operator+(const poly& f, const poly& g) { int k = std::max(f.size(), g.size()); std::vector<int> res(k); for (int i = 0; i < k; ++i) { res[i] = f[i] + g[i]; if (res[i] >= P) res[i] -= P; } return poly(res); } friend poly operator-(const poly& f, const poly& g) { int k = std::max(f.size(), g.size()); std::vector<int> res(k); for (int i = 0; i < k; ++i) { res[i] = f[i] - g[i]; if (res[i] < 0) res[i] += P; } return poly(res); } friend poly operator*(const poly& f, const poly& g) { int sz = 1, k = f.size() + g.size() - 1; while (sz < k) sz *= 2; std::vector<int> p = f.a, q = g.a; p.resize(sz); q.resize(sz); dft(p); dft(q); for (int i = 0; i < sz; ++i) p[i] = 1ll * p[i] * q[i] % P; idft(p); return poly(p); } friend poly operator/(const poly& f, const poly& g) { return f.divide(g).first; } friend poly operator%(const poly& f, const poly& g) { return f.divide(g).second; } poly& operator+=(const poly& f) { return (*this) = (*this) + f; } poly& operator-=(const poly& f) { return (*this) = (*this) - f; } poly& operator*=(const poly& f) { return (*this) = (*this) * f; } poly& operator/=(const poly& f) { return (*this) = divide(f).first; } poly& operator%=(const poly& f) { return (*this) = divide(f).second; } poly derivative() const { if (a.empty()) return poly(); int n = a.size(); std::vector<int> res(n - 1); for (int i = 0; i < n - 1; ++i) res[i] = 1ll * (i + 1) * a[i + 1] % P; return poly(res); } poly integral() const { if (a.empty()) return poly(); int n = a.size(); std::vector<int> res(n + 1); for (int i = 0; i < n; ++i) res[i + 1] = 1ll * a[i] * power(i + 1, P - 2) % P; return poly(res); } poly rev() const { return poly(std::vector<int>(a.rbegin(), a.rend())); } poly inv(int m) const { poly x(power(a[0], P - 2)); int k = 1; while (k < m) { k *= 2; x = (x * (2 - modxk(k) * x)).modxk(k); } return x.modxk(m); } poly log(int m) const { return (derivative() * inv(m)).integral().modxk(m); } poly exp(int m) const { poly x(1); int k = 1; while (k < m) { k *= 2; x = (x * (1 - x.log(k) + modxk(k))).modxk(k); } return x.modxk(m); } poly sqrt(int m) const { poly x(1); int k = 1; while (k < m) { k *= 2; x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((P + 1) / 2); } return x.modxk(m); } poly sin() const { int i = power(G, (P - 1) / 4); poly p = i * (*this); p = p.exp(p.size()); poly q = (P - i) * (*this); q = q.exp(q.size()); poly r = (p - q) * power(2 * i % P, P - 2); return r; } poly cos() const { int i = power(G, (P - 1) / 4); poly p = i * (*this); p = p.exp(p.size()); poly q = (P - i) * (*this); q = q.exp(q.size()); poly r = (p + q) * power(2, P - 2); return r; } poly tan() const { return sin() / cos(); } poly cot() const { return cos() / sin(); } poly arcsin() { poly sq = (*this) * (*this).modxk(size()); for (int i = 0; i < size(); ++i) sq.a[i] = sq.a[i] ? P - sq.a[i] : 0; sq.a[0] = 1 + sq.a[0]; if (sq.a[0] >= P) sq.a[0] -= P; poly r = (derivative() * sq.sqrt(size()).inv(size())).integral(); return r; } poly arccos() { poly r = arcsin(); for (int i = 0; i < size(); ++i) r.a[i] = r.a[i] ? P - r.a[i] : 0; return r; } poly arctan() { poly sq = (*this) * (*this).modxk(size()); sq.a[0] = 1 + sq.a[0]; if (sq.a[0] >= P) sq.a[0] -= P; poly r = (derivative() * sq.inv(size())).integral(); return r; } poly arccot() { poly r = arctan(); for (int i = 0; i < size(); ++i) r.a[i] = r.a[i] ? P - r.a[i] : 0; return r; } poly mulT(const poly& b) const { if (b.size() == 0) return poly(); int n = b.size(); return ((*this) * b.rev()).divxk(n - 1); } std::pair<poly, poly> divide(const poly& g) const { int n = a.size(), m = g.size(); if (n < m) return make_pair(poly(), a); poly fR = rev(); poly gR = g.rev().alignxk(n - m + 1); poly gRI = gR.inv(gR.size()); poly qR = (fR * gRI).modxk(n - m + 1); poly q = qR.rev(); poly r = ((*this) - g * q).modxk(m - 1); return std::make_pair(q, r); } std::vector<int> eval(std::vector<int> x) const { if (size() == 0) return std::vector<int>(x.size(), 0); const int n = std::max(int(x.size()), size()); std::vector<poly> q(4 * n); std::vector<int> ans(x.size()); x.resize(n); std::function<void(int, int, int)> build = [&](int p, int l, int r) { if (r - l == 1) { q[p] = std::vector<int>{1, (P - x[l]) % P}; } else { int m = (l + r) / 2; build(2 * p, l, m); build(2 * p + 1, m, r); q[p] = q[2 * p] * q[2 * p + 1]; } }; build(1, 0, n); std::function<void(int, int, int, const poly&)> work = [&](int p, int l, int r, const poly& num) { if (r - l == 1) { if (l < int(ans.size())) ans[l] = num[0]; } else { int m = (l + r) / 2; work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l)); work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m)); } }; work(1, 0, n, mulT(q[1].inv(n))); return ans; } }; } // namespace Polynomial using Polynomial::poly; void SolveCase(int Case) { int n, m; std::cin >> n >> m; std::vector<int> a(n); for (int i = 0; i < n; ++i) std::cin >> a[i]; std::vector<std::pair<poly, poly>> all(n); std::vector<int> temp(11); for (int i = 0; i < n; ++i) { temp[0] = 1; poly f(temp); temp[0] = 0; temp[a[i]] = 1; poly g(temp); temp[a[i]] = 0; all[i] = std::make_pair(f, g); } while (all.size() > 1) { std::vector<std::pair<poly, poly>> next; for (int i = 0; i < all.size(); i += 2) { if (i == all.size() - 1) { next.push_back(all[i]); } else { next.push_back({ all[i].first * all[i + 1].first + all[i].second * all[i + 1].second, all[i].first * all[i + 1].second + all[i].second * all[i + 1].first, }); } } all = std::move(next); } poly f = all[0].second; std::cout << f[m] << "\n"; }