C/C++教程

CF375E Red and Black Tree

本文主要是介绍CF375E Red and Black Tree,对大家解决编程问题具有一定的参考价值,需要的程序猿们随着小编来一起学习吧!

题目传送门

Solution

非常神奇的一道题。

我们不考虑交换操作,相反,我们去考虑把多少个 \(0\) 的位置变为 \(1\),同时我们记录选了多少个黑点,如果跟原来黑点数量相同即是合法。

此时我们可以发现一个神奇的性质对于 \(u\) 的儿子 \(v\),如果覆盖 \(u\) 的节点不覆盖 \(v\),那么覆盖 \(v\) 的节点在 \(v\) 的子树内的时候最优,因为不在的话会让覆盖 \(u\) 的节点变成覆盖 \(v\) 的节点。

所以我们可以考虑设 \(f_{u,i,k}\) 表示以 \(u\) 为根的子树,选了 \(i\) 个黑点,覆盖 \(u\) 的节点是 \(k\) 的最小需要把多少个白点变为黑点,然后我们可以树上背包。复杂度显然 \(\Theta(n^3)\)。

Code

#include <bits/stdc++.h>
using namespace std;

#define Int register int
#define MAXN 505
#define sh short

template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> inline void chkmax (T &a,T b){a = max (a,b);}
template <typename T> inline void chkmin (T &a,T b){a = min (a,b);}

#define pii pair<int,int>
#define se second
#define fi first
vector <pii> g[MAXN];

int n,X,tot,col[MAXN];
sh f[MAXN][MAXN][MAXN],h[MAXN][MAXN],miv[MAXN][MAXN];

int ind,tur[MAXN],dfn[MAXN],siz[MAXN];
void dfs (int u,int fa){
	dfn[u] = ++ ind,tur[ind] = u;
	for (pii it : g[u]){
		int v = it.fi;
		if (v ^ fa) dfs (v,u);
	}
}

void getdis (int u,int rt,int fa,int dis){
	if (u == rt) f[u][1][dfn[u]] = 1 ^ col[u];
	else f[rt][0][dfn[u]] = 0;
	for (pii it : g[u]){
		int v = it.fi,w = it.se;
		if (v != fa && dis + w <= X) getdis (v,rt,u,dis + w);
	}
}

void dfs1 (int u,int fa){
	siz[u] = 1;
	for (pii it : g[u]){
		int v = it.fi;
		if (v == fa) continue;
		dfs1 (v,u);
		for (Int i = 0;i <= siz[u];++ i) for (Int t = 1;t <= n;++ t) h[i][t] = f[u][i][t],f[u][i][t] = 0x3f3f;
		for (Int i = 0;i <= siz[u];++ i) for (Int t = 1;t <= n;++ t){
			for (Int j = 0;j <= siz[v] && i + j <= tot;++ j){
				chkmin (f[u][i + j][t],(sh)(h[i][t] + f[v][j][t]));
				if (t < dfn[v] || t >= dfn[v] + siz[v])
					chkmin (f[u][i + j][t],(sh)(h[i][t] + miv[v][j]));
			}
		}
		siz[u] += siz[v];
	}
	for (Int i = 0;i <= siz[u];++ i){
		miv[u][i] = 0x3f3f;
		for (Int k = dfn[u];k <= dfn[u] + siz[u] - 1;++ k) chkmin (miv[u][i],f[u][i][k]);
	}
}

signed main(){
	read (n,X);
	for (Int x = 1;x <= n;++ x) read (col[x]),tot += col[x];
	for (Int i = 2,u,v,w;i <= n;++ i) read (u,v,w),g[u].push_back ({v,w}),g[v].push_back ({u,w});
	dfs (1,0),memset (f,0x3f,sizeof (f));
	for (Int u = 1;u <= n;++ u) getdis (u,u,u,0);
	dfs1 (1,0);sh ans = n + 1;
	for (Int i = 0;i <= tot;++ i)
		for (Int j = 1;j <= n;++ j) 
			chkmin (ans,f[1][i][j]);
	write (ans == n + 1 ? -1 : ans),putchar ('\n');
	return 0;
}
这篇关于CF375E Red and Black Tree的文章就介绍到这儿,希望我们推荐的文章对大家有所帮助,也希望大家多多支持为之网!