import hashlib import sympy from Crypto.Util.number import * flag = 'GWHT{******}' secret = '******' assert(len(flag) == 38) half = len(flag) / 2 flag1 = flag[:half] flag2 = flag[half:] secret_num = getPrime(1024) * bytes_to_long(secret) p = sympy.nextprime(secret_num) q = sympy.nextprime(p) N = p * q e = 0x10001 F1 = bytes_to_long(flag1) F2 = bytes_to_long(flag2) c1 = F1 + F2 c2 = pow(F1, 3) + pow(F2, 3) assert(c2 < N) m1 = pow(c1, e, N) m2 = pow(c2, e, N) output = open('secret', 'w') output.write('N=' + str(N) + '\n') output.write('m1=' + str(m1) + '\n') output.write('m2=' + str(m2) + '\n') output.close()
N = 6365851495945747469090301601826908662229092...
m1 = 900099743414522432169869380283712...
m2 = 487443985757405173426628188375657117604235507...
half = len(flag) / 2 flag1 = flag[:half] flag2 = flag[half:]
这里将flag分为了长度相等的两半,每段长度为19
secret_num = getPrime(1024) * bytes_to_long(secret) p = sympy.nextprime(secret_num) q = sympy.nextprime(p)
通过这部分我们可以得到p和q相邻,因为q是p的下一个质数
F1 = bytes_to_long(flag1) F2 = bytes_to_long(flag2)
将两部分flag转成数值
c1 = F1 + F2 c2 = pow(F1, 3) + pow(F2, 3) assert(c2 < N)
c1为F1与F2的和
c2为F1与F2的立方和
并且保证c2<N
m1 = pow(c1, e, N) m2 = pow(c2, e, N)
\(c1^e ≡ m1 (mod N)\)
\(c2^e ≡ m2 (mod N)\)
也就是我们得到的m1与m2
以上就是题目加密的一个思路,涵盖的知识点是RSA,且p与q相邻
我们逆着题目加密的过程进行解密
\(m1^d ≡ c1 (mod N)\)
\(m2^d ≡ c2(mod N)\)
即pow(m1 , d , N)
pow(m2 , d , N)
接着我们可以通过z3来对F1F2进行求解
\(F1 + F2 = c1\)
\(F_1^3 + F_2^3 = c2\)
得到F1F2后,就相当于得到flag的两部分了
GWHT{f709e0e2cfe7e530ca8972959a1033b2}